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Abstract.

This paper presents a novel SHACL-based framework for validating the Time Ontology (https://www.w3.org/TR/owl-time). The
Time Ontology, currently a W3C Candidate Recommendation, is widely recognized as the “de facto” standard for representing
temporal data in the Semantic Web. However, its current OWL axiomatization cannot enforce several validation constraints on
temporal knowledge that can be expressed using the Time Ontology vocabulary. These constraints are instead captured by the
SHACL formalization proposed in this paper. Nevertheless, we show that SHACL shapes alone are insufficient to validate even
relatively simple knowledge graphs that can be encoded using this vocabulary. This limitation arises because validation must be
performed on the inferred knowledge graph, which SHACL shapes alone cannot derive internally. To address this, our framework
first computes the inferred knowledge graph using SHACL-SPARQL rules and then validates it through SHACL shapes.

In the second part of the paper, we argue that our findings extend beyond the Time Ontology and have broader implications
for SHACL and knowledge graph reasoning. We therefore view our work as a call to action for the Semantic Web community to
systematically investigate the interplay between validation and inference. Specifically, there is a need to study the representational
requirements of different use cases to identify the minimal set of SHACL shapes and inference rules necessary for data validation
in each context. These research efforts could ultimately lead to the definition of distinct SHACL dialects, analogous to how
OWL Lite, OWL DL, and other profiles were defined for OWL. The SHACL shapes and SHACL-SPARQL rules that define
the proposed framework are freely available in the GitHub repository https://github.com/liviorobaldo/TimeOntologyInSHACL,
together with Java programs and detailed instructions for execution.

Keywords: Time Ontology, Encoding temporal knowledge, Validation and inference in SHACL

1. Introduction

Time is a fundamental aspect of reality and the representation of dynamic phenomena. These appear in many appli-
cation domains, e.g., planning, robotics, compliance checking, real-time systems, computer aided engineering, and
any other application that requires to model actions, changes, or behaviors.

There are various aspects of time that need to be taken into account when providing definitions of temporal
elements [1]: time can be bounded or not, discrete or continuous, fuzzy or non-fuzzy, periodic, absolute or relative,
linear or branching. In addition, temporal representations can be focused on points or intervals, which in turn can
be crisp or fuzzy, bounded or unbounded, convex or non-convex, open or closed.
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These aspects have been extensively studied over the past decades in the literature on Temporal Logics [2][3][4],
and widely applied to tasks such as modeling the behavior and properties of state transition systems (e.g., model
checking) [5]. This has led to the development of model checkers such as NuSMV [6][7], among others.

The Semantic Web also requires an explicit representation of time [8]. Its standards are grounded in the Resource
Description Framework (RDF) [9], which provides a basis for representing interconnected data on the Web. How-
ever, RDF is only a data model, not a full logical language, as it lacks inference rules for deriving new triples from
the asserted ones. To address this, several languages have been proposed, beginning with RDF Schema (RDFS),
which introduces basic inference rules, for example to support is-a reasoning. The most widely used language for
inference over RDF knowledge graphs is the Web Ontology Language (OWL) [10], rooted in Description Logics
[11]. Among its variants, OWL 2 [12] has become the most widely adopted.

Some proposals for extending Description Logics and OWL with the expressiveness of Temporal Logics have
been investigated, although they have not been incorporated into the family of Semantic Web standards. For in-
stance, [13] and [14] provide surveys of Temporal Description Logics as a formal approach for representing time
in Description Logics. Along these lines, [15] proposed an extension of OWL2-QL for ontology-based data access.
Nevertheless, these and other similar initiatives have only been developed at the theoretical level, with the primary
aim of addressing computational complexity and decidability issues, and they lack implementations.

More recently, the Semantic Web community has also emphasized the importance of distinguishing between
validation and inference in knowledge graphs. Inference languages such as OWL and its extensions primarily focus
on deriving new facts and checking logical consistency, whereas validation serves a broader purpose. Validation goes
beyond detecting contradictions: it also enforces data quality, integrity, and domain-specific constraints that are not
captured by purely logical reasoning. Formally, validation is the process of ensuring that the data in a knowledge
graph complies with expected rules, formats, or external requirements. Its goal is to verify that each data element
satisfies predefined criteria, such as schema constraints, datatypes, or permitted values, thereby ensuring that the
data is accurate and well-formed according to the given specifications.

Logical consistency, by contrast, addresses a narrower concern: verifying that all facts in the knowledge graph do
not contradict one another under the semantics of the chosen logical formalism. In this sense, logical consistency
can be regarded as a specific type of validation, under the (reasonable) assumption that anything inconsistent is
also invalid. Nevertheless, although this assumption is indeed reasonable in many use cases, it should also be noted
that the explicit representation of inconsistencies, fallacies, and other abnormalities, fit to reason about them, has
been identified as a critical gap in current logical frameworks for Artificial Intelligence [16]. A recent RDF-based
proposal in this direction is [17], which introduces a novel deontic logic encoded in RDF and SPARQL, where
inconsistencies, conflicts, violations, and other abnormalities are explicitly represented and may therefore exist
within the knowledge graph. In other words, in [17], inconsistent knowledge graphs are not invalid.

To address the recognized need for validation in knowledge graphs, which goes beyond merely checking for
inconsistencies, the Shapes Constraint Language (SHACL) was released in 2017 as a W3C Recommendation [18].

SHACL consists of two main components: SHACL Core' and SHACL-SPARQL?. SHACL Core defines a stan-
dard set of built-in constraints for validating RDF data, including predefined constraint types such as cardinality,
value ranges, and datatype restrictions. SHACL-SPARQL extends SHACL Core by allowing users to define cus-
tom constraints through SPARQL queries. By leveraging SPARQL, it offers greater flexibility and expressiveness,
enabling the definition of more complex validation rules.

Since its release, SHACL adoption has steadily increased in both academia and industry (see [19] for an
overview). The literature includes several foundational works that propose formal semantics for SHACL (e.g., [20]),
also addressing recursive SHACL shapes; these are shapes that may reference themselves, possibly through cycles
involving multiple shapes, which can in principle lead to infinite loops during validation [21], [22]. These theoret-
ical works primarily focus on SHACL Core; however, as we show below, SHACL Core alone is not sufficient to
represent several validation constraints that require the additional expressivity of SHACL-SPARQL.

Uhttps://www.w3.org/TR/shacl/#core-components
Zhttps://www.w3.org/TR/shacl/#sparql-constraints
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More recent studies have explored practical applications of SHACL in applicative scenarios with potential indus-
trial relevance [23], [24], [25], [26]. This paper further contributes to this growing body of work, particularly to the
strand concerned with the applicative uses of SHACL.

This paper focuses on the validation of the Time Ontology? as a case study for SHACL. Currently a W3C Candi-
date Recommendation Draft, the Time Ontology is widely regarded as a “de facto” standard to represent temporal
knowledge in the Semantic Web. Several ontologies in different domains import the Time Ontology to model time*.

The vocabulary of the Time Ontology provides RDF resources for representing both the quantitative and qualita-
tive aspects of temporal instants and intervals across a variety of reference systems, including the standard Gregorian
calendar, non-Gregorian calendars, Unix time, and geologic time [27]. Notably, the Time Ontology includes prop-
erties corresponding to the well-known thirteen basic Allen temporal relations [28]. However, the full version of
Allen’s interval algebra is not currently covered by the ontology. The complete algebra also supports vectors of
these thirteen relations [29], which enable the expression of more complex temporal constraints. Nonetheless, the
current Time Ontology vocabulary does not provide RDF resources for representing such vectors.

The Time Ontology is currently implemented in OWL 2 DL. However, its existing OWL axioms support only
a limited set of consistency checks, most of which are not directly relevant for temporal reasoning. As a result, it
is currently possible to encode clearly nonsensical temporal data, such as intervals that end before they start. The
OWL axioms in the Time Ontology cannot detect these cases as logically inconsistent or, more generally, as invalid,
which considerably limits the ontology’s practical utility in real-world applications.

This paper presents a set of SHACL shapes to validate the RDF resources in the Time Ontology. However, we do
not consider all RDF resources within the Time Ontology, but instead focus on a specific fragment, discussed below
in Section 3: the fragment of the ontology related to the xsd: dateTime datatype. This is the single datatype for
which SPARQL v1.1 defines operators for comparison®.

This paper also demonstrates that SHACL shapes alone are insufficient to validate certain RDF knowledge graphs,
even when only a few of the Time Ontology’s RDF resources are employed. While we illustrate this point using the
fragment of the Time Ontology discussed below in Section 3, it seems apparent that the implications are broader:
if SHACL shapes cannot adequately validate relatively simple knowledge graphs built with the Time Ontology
vocabulary, similar limitations can reasonably be expected in more complex cases.

To detect the identified invalid knowledge graphs, it is necessary to infer specific additional triples from the
explicitly asserted ones. These triples cannot be derived internally by SHACL shapes. Once the inferred triples
are available, SHACL shapes can then be used to identify invalid patterns within the inferred knowledge graph.
In this sense, the inferred triples serve as “intermediate results” required for the final validation, which cannot be
accomplished by SHACL shapes in a single step.

In principle, the inferred knowledge graph could be computed using OWL or any other formalism designed for
inference over knowledge graphs, such as SWRL [30]. However, in this paper, we chose to use SHACL rules, as
defined in the W3C Working Group Note of 8 June 20176.

Specifically, we used SHACL-SPARQL rules’, which are also based on SPARQL and thus appear to be the
natural choice for this task because they integrate seamlessly with SHACL-SPARQL shapes: both rely on SPARQL,
with inference rules expressed as CONSTRUCT-WHERE queries to generate inferred triples, and shapes expressed
as SELECT-WHERE queries to identify invalid patterns.

Using alternative logical formalisms, such as OWL or SWRL, would, in our view, hinder comprehension and
make editing and debugging more cumbersome, without offering any significant benefit. In addition, as will be
discussed below, it remains unclear whether OWL or other formalisms have sufficient expressivity to represent the
same inference rules that we can implemented using SHACL-SPARQL.

3https://www.w3.org/TR/owl-time

“https://www.w3.0rg/2015/spatial/wiki/OWL_Time_Ontology_adoption

3See https://www.w3.org/TR/xmlschema-2/#dateTime. However, it is worth noting that most SPARQL implementations “unofficially” extend
the coverage of the official SPARQL v1.1 operators and functions to other datatypes, such as xsd:date or xsd:duration.

Shttps://www.w3.org/TR/shacl-af , retrieved September 10, 2025

https://www.w3.org/TR/shacl-af/#SPARQLRule
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Similar to standard OWL reasoners such as HermiT [31], which repeatedly apply OWL axioms until no further
triples can be inferred, our approach also iteratively applies SHACL-SPARQL rules until the inferred graph reaches
closure, prior to validation. This iterative process is not prescribed in the aforementioned Working Group Note, nor
is it implemented in existing SHACL libraries such as the TopBraid SHACL Java library v.1.3.2%, which we used in
our implementation. These libraries execute SHACL rules only once. Consequently, the software available on our
GitHub repository programmatically re-executes the SHACL-SPARQL rules until no new triples are produced, and
then validates the resulting knowledge graph against the SHACL shapes. We believe this two-step approach should
be adopted by any software for validating knowledge graphs using SHACL. In other words, what our implementation
currently achieves programmatically should, in our view, be formalized and standardized by the W3C.

The rest of the paper is organized as follows. The next section provides a brief review of the literature on repre-
senting time in the Semantic Web. Section 3 is then dedicated to the Time Ontology, focusing specifically on the
fragment relevant to our proposed formalization, namely the RDF resources associated with the xsd:dateTime
datatype. Section 4 presents the semantic characterization of the Time Ontology, as originally proposed by its pro-
ponents and initial editors, Jerry R. Hobbs and Feng Pan, and axiomatized in first-order logic in [32]. While we
base our discussion on their work, we do not follow their axiomatization strictly, as we disagree with some of its
technical choices. This section also explains the rationale behind our decisions and introduces the variant of [32]’s
axiomatization that we adopt in this work.

Sections 5 and 7 form the core of this paper. The former demonstrates that SHACL shapes alone are insufficient
to detect even some simple knowledge graphs that can be constructed with the Time Ontology vocabulary, while
the latter presents the SHACL axiomatization corresponding to the first-order logic axiomatization from Section 4.
Section 7 discusses possible extensions of both the proposed SHACL axiomatization and the Time Ontology vo-
cabulary, while Section 8 provides broader reflections on the challenges and risks of using SHACL to validate RDF
knowledge graphs, based on the lessons learned from our work on the Time Ontology. Finally, Section 9 summarizes
the main findings and advocates the definition of distinct SHACL dialects, as mentioned in the abstract.

2. Background: representing temporal data in the Semantic Web

Time is not inherently integrated into Semantic Web standards, and maintaining compatibility with these standards
requires representations that incorporate reasoning rules into existing ontologies, rather than relying on specialized
reasoning software. There are two main components for representing time, as needed for application use:

a. The representation of temporal concepts such as time points and intervals.

b. The representation of dynamic properties (fluent properties) of objects and events using the above mentioned
temporal concepts.

Core temporal concepts, their properties, and constraints are defined using temporal ontologies, while the application
of these properties in specific domains is an orthogonal dimension. Temporal ontologies include definitions of
temporal intervals and points, among others, and these definitions can be used to represent temporal properties in
various ways, such as through 4D-fluents or reification.

Although the focus of this paper is on (a), specifically the representation of temporal concepts based on the
definitions in the Time Ontology, the next two subsections will briefly survey past literature on representing both
aspects of temporal representation in the Semantic Web, i.e., (a) and (b) above, respectively.

2.1. Temporal Ontologies

Time is a fundamental aspect of the world and temporal concepts are involved on almost all knowledge represen-
tation tasks since many properties of objects are dynamic. Thus, many temporal ontologies have been proposed in

8https://repol.maven.org/maven2/org/topbraid/shacl/1.3.2
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the literature [1]. Among these, the Time Ontology in OWL, also know as OWL-Time’, is the most widely used. A
recent survey on the representation and management of temporal data is provided in [33].

The Time Ontology is a temporal ontology and currently a W3C Candidate Recommendation Draft that provides
definitions of temporal points, intervals, and their relationships. Having the status of a W3C candidate recommen-
dation draft, it is widely used, but since the adoption of the Time Ontology as a standard is an ongoing work, several
alternative temporal ontologies have also been proposed. Since the essence of the Semantic Web is the definition of
common vocabularies, this work focuses on enhancing the Time Ontology thus contributing to the standardization
effort rather than proposing yet another temporal ontology.

Other temporal ontologies include Resusable Time Ontology [34], TimeML [35], which offers a translation to
DAML-OIL, the predecessor of OWL, GFO-Time [36], which is part of the upper ontology GFO, TOWL [37],
which extends OWL with temporal constructs but is not compliant with standard Semantic Web tools, and TL-OWL
[38], which also extends Semantic Web standards with temporal concepts, similarly to OWL-Met [39]. In PSI-ULO
[40] temporal concepts are part of an upper ontology defined in PSI-Time [41] while in TimeLine ontology [42]
definitions for temporal concepts for digital music are provided. Temporal RDF [43] proposes extending RDF with
temporal annotations while SWRL-Time [44], CNTRO [45] and SOWL [46] define reasoning mechanisms based
on Semantic Web Rule Language (SWRL) [30].

This paper proposes using SHACL-SPARQL rules as an alternative to SWRL, OWL, or other logical formalisms
for the Semantic Web to enhance the current version of the Time Ontology. As noted in the introduction, SHACL-
SPARQL rules were chosen because they integrate seamlessly with SHACL-SPARQL shapes. The potential use of
SWRL, OWL, or other formalisms as alternatives warrants further investigation.

While SHACL has been an official W3C recommendation since 2017'°, neither SWRL nor SHACL-SPARQL
rules have (yet?) achieved standard status. In other words, currently both are only proposals for W3C recommenda-
tions. SWRL has been a proposal since 2004!!, while SHACL-SPARQL rules have been a proposal since 2017'2.

2.2. Representation of dynamic/fluent properties

Almost all conceivable application domains involve objects with dynamic properties, also known as fluent proper-
ties, that change over time. The definitions of the temporal concepts involved (e.g., the temporal instant when an
event occurs or the temporal interval during which a dynamic property holds) are provided by temporal ontologies.
However, their application in specific domains is not straightforward, as fluent properties are not binary (e.g., they
involve a subject, an object, and a temporal instant or interval). As a result, they cannot be directly represented as
object or datatype properties of a class, leading to many different approaches in practice for using temporal concepts.

Integrating temporal concepts defined in temporal ontologies with representations of fluent properties in the
Semantic Web can be achieved in various ways such as extending repositories with support for ternary relations [47]
(standard RDF is based on triple stores), versioning [48], which is based on creating a new copy of the knowledge
base when a property is modified, named graphs [49], the generic method of reification, and the 4D fluents approach
proposed in [50]. Various methods are presented and compared in [51] and they have been extended to cover spacial
properties of objects in [52]. The work in [51] retains compatibility with OWL/RDES and offers integrated reasoning
capabilities which is not the case of other approaches such as versioning and temporal annotated named graphs.
Temporal reasoning in [51], as well as in SWRL-Time [44] and CNTRO [45], is achieved through SWRL.

In [53], the CHRONOS ED tool was proposed, offering enhanced performance compared to the work in [51].
However, this approach was somewhat ad-hoc, as it relied on specialized reasoning software that was compatible
with specific ontologies, rather than using generic semantic OWL reasoners such as HermiT [54] or Pellet [55],
which limited its overall applicability.

It is important to note that temporal ontologies, which provide definitions for temporal instances and intervals, can
be used in the approaches discussed above by importing them into the corresponding formal frameworks. Several

9https://www.w3.org/TR/owl-time
10nhttps://www.w3.org/TR/shacl
Mhttps://www.w3.org/submissions/SWRL
2https://www.w3.org/TR/shacl-af
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alternatives exist for defining temporal concepts, but the Time Ontology has emerged as the “de facto” standard,
even though it is not yet an official W3C recommendation. As the most significant proposal in this area, it is the
focus of the present work and will be described in more detail in the next section.

3. The Time Ontology

The Time Ontology is currently a W3C candidate recommendation draft'® publicly available online and download-
able in Turtle format. Its IRIis “http://www.w3.0rg/2006/time#”; in this paper, as well as in the associated
GitHub repository, we will refer to this IRI with the prefix “t ime : ”. The version of the Time Ontology used in this
paper is the one retrieved on September 10, 2025; of course, subsequent versions of the Time Ontology could not
be compatible with the implementation proposed in this paper.

While the full formal definitions of the ontology’s resources (classes, individuals, and properties) are available at
the Time Ontology’s homepage, this section will focus on the resources that may be processed via SHACL, namely
the ones associated with the xsd : dateTime datatype. As pointed out in the Introduction, xsd: dateTime is the
single temporal datatype for which SPARQL 1.1 defines comparison operators'#, therefore it is the single one for
which it is currently possible to assert SHACL shapes and rules. These resources are shown in Figure 1.

owl.Class TernporalEntity

o [ equals : TernporalEntity

A BElREIR R [ after: TernporalEntity
m  owlDatatypeProperty [ before : TemporalEntity
D rdfs-subclassor [ hasBeginning : Instant

[ hasEnd : Instant
——= owl:disjointWith K
" Interval
[ inside : Instant
Instant
M inX5DDateTime : dateTime ZP

Properinterval
[ intervalAfter : Properinterval
[ intervalBefore : Properinterval
[ intervalContains : Properinterval
[ intervalDuring : Properinterval
[ intervalEquals : Properinterval
[ intervalFinishedBy : Properlnterval
[ intervalFinishes : Properinterval
[ intervalMeets : Properinterval
[ intervalMetBy : Properinterval
[ intervalOverlappedBy : Properinterval
[ intervalOverlaps : Properinterval
[ intervalStartedBy : Properinterval
[ intervalStarts : Properinterval

Fig. 1. Classes and properties of the Time Ontology considered in this paper. This figure is a modified version of the one available at
https://www.w3.org/TR/owl-time/#topology (retrieved on September 10, 2025).

The top-level class TemporalEnt ity has two subclasses: Interval and Instant. Instances of Interval
represent temporal entities with duration, bounded by a start and an end specified through hasBeginning and
hasEnd. Instances of Instant denote temporal entities with zero duration, conceived as limiting cases of intervals
where the start and end coincide. ProperInterval, a subclass of Interval, is defined as an interval whose
beginning and end are distinct. ProperInterval and Instant are declared disjoint in the Time Ontology.
Regarding properties, this paper considers a single datatype property, inXSDDateTime, which links instances
of Instant to values of the datatype xsd:dateTime. hasBeginning and hasEnd specify the start and end

Bhttps://www.w3.org/TR/owl-time
14See https://www.w3.0rg/TR/2013/REC-sparql1 1-query-20130321/#OperatorMapping. Since the W3C specification allows the timezone in
xsd:dateTime to be optional, the SHACL axiomatization presented below includes a shape that enforces the presence of a timezone.
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points of temporal entities. inside links intervals to instants that occur properly within them; in other words,
the beginning and end instants of an interval are not considered to occur “inside” the interval. equals, after,
and before encode temporal orderings between temporal entities: equals connects two temporal entities that
start and end at the same time; if a temporal entity comes after another, then the latter precedes the former; if a
temporal entity comes be fore another, then the former precedes the latter.

Finally, the thirteen properties shown in Figure 1 within the ProperInterval box correspond to Allen’s tem-
poral relations, each linking a pair of ProperInterval instances. Allen’s temporal algebra [28] is a cornerstone
of temporal logic research. However, as noted earlier in the Introduction, the full version of Allen’s algebra is defined
over vectors of the basic Allen temporal relations, whereas the current Time Ontology vocabulary can represent only
individual relations (i.e., single-element vectors). Extending the ontology to cover the full algebra is a possible di-
rection for future work, but it should be noted that the constraint propagation algorithm introduced by Allen [28] for
computing the closure of the algebra has exponential complexity [29]. Consequently, such an extension could result
in an ontology that is impractical for real-world applications. To mitigate this issue, several tractable sub-algebras
with polynomial-time reasoning have been identified (e.g., [56]). More practical extensions of the Time Ontology
could therefore restrict their vocabulary to the constructs supported by these sub-algebras.

One of the thirteen basic'> temporal relations in Allen’s temporal algebra is Equal, represented in the Time
Ontology by the property intervalEquals. If two intervals are related by Equal, then their beginnings
and ends coincide. Six of the remaining relations, namely Before, During, Meets, Starts, Finishes,
and Overlaps, are often regarded as the “primary” ones and correspond to the Time Ontology properties
intervalBefore, intervalDuring, intervalMeets, intervalStarts, intervalFinishes,
and intervalOverlaps, respectively. The other six, i.e., After, Contains, MetBy, StartedBy,
FinishedBy, and OverlappedBy, are their inverse properties, and are represented in the Time Ontol-
ogy by the properties intervalAfter, intervalContains, intervalMetBy, intervalStartedBy,
intervalFinishedBy, and intervalOverlappedBy.

The definitions of Equal and the six “primary” relations are as follows:

(1) a. Tl Equal T2: the beginning of T1 coincides with the beginning of T2 and the end of T1 coincides
with the end of T2.

Tl Before T2:T1 ends earlier than T2 begins.
Tl During T2: T2 properly contains T1.
Tl Meets T2:theend of T1 coincides with the beginning of T2.

Tl Starts T2:the beginning of T1 coincides with the beginning of T2, while the end of T1 occurs
temporally before the end of T2.

o &0 o

f. T1 Finishes T2: the end of T1 coincides with the end of T2, while the beginning of T1 occurs
temporally after the beginning of T2.

g. T1 Overlaps T2:the beginning of T1 occurs temporally before the beginning of T2 and the end of
T1 occurs temporally before the end of T2.

In addition to the RDF resources shown in Figure 1, the Time Ontology includes several RDFS and OWL axioms
that define class hierarchies, property domains and ranges, and inverse relationships. The semantics of these axioms
is incorporated into the axiomatization proposed in this paper, as explained in the next section. The ontology also
contains various owl:allValuesFrom, owl:hasValue, and owl:cardinality restrictions, which are
not relevant to temporal modeling and are therefore excluded from consideration in this work.

It should be observed, on the other hand, that when the Time Ontology was originally proposed, about twenty
years ago, its proponents and editors, Jerry R. Hobbs and Feng Pan, postulated in [32] a formal semantics for the
ontology in the form of a first-order logic axiomatization establishing a topological ordering among instants and

15 Allen’s original work [28] also defines the property In, which subsumes During, Starts, and Finishes. The Time Ontology includes
a corresponding property intervalIn. The Time Ontology also includes an additional property, intervalDisjoint, which has no coun-
terpart in Allen’s original work and subsumes intervalBefore and intervalAfter. This paper does not consider these two additional
super-properties and focuses solely on the thirteen basic temporal relations.
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intervals. Most of these first-order logic axioms, however, were never implemented, possibly because it proved
difficult to identify the specific RDFS or OWL constructs needed to capture the intended topological ordering.

By contrast, as we will show below, implementing our variant of the first-order logic axioms from [32] in SHACL
is relatively straightforward. As noted earlier, we do not follow Hobbs and Pan’s axiomatization strictly, as we
disagree with two of its fundamental technical choices. The next section explains our reasoning and presents the
variant of [32]’s axiomatization that we adopt in this work.

4. A semantic characterization of the Time Ontology’s resources in Figure 1

In the previous section, the RDF resources in Figure 1 were described in plain text, along with some of the constraints
imposed on them by the RDFS and OWL axioms in the official version of the Time Ontology. In this subsection, we
provide a rigorous and comprehensive semantic characterization of these resources by adapting the first-order logic
axiomatization originally proposed by Jerry R. Hobbs and Feng Pan in [32].

As noted at the end of the previous section, we disagree with two fundamental technical choices made in [32].
First, [32] represents infinite intervals as intervals in which either the beginning or the end (or both) is explicitly
missing. Second, [32] does not explicitly encode or axiomatize the relation equals; instead, it uses the operator
“=""to denote equality, but its meaning remains unspecified, i.e., the operator was not axiomatized in [32].

Regarding the representation of infinite intervals, [32] states that “a positively infinite interval has no end, and a
negatively infinite interval has no beginning”. In other words, [32] treats infinite intervals as those that never appear
as the subject of hasBeginning (so that their beginning is interpreted as —oo) and/or as the subject of hasEnd
(so that their end is interpreted as +00).

This choice affects the formulation of several axioms in [32], such as the one defining ProperInterval (here,
the symbol “#£” from [32] is replaced by “—equals” to reflect our revision of the second technical choice).

(2) V:[ ProperInterval (T)< (Interval (T)A
Vipte [ (hasBeginning (T, tb) AhasEnd (T, te) ) — ~equals (tb,te) 1) ]

Suppose the knowledge graph only includes the triple “T a time:Interval”,correspondingto Interval(T),
in first-order logic. Since T’s beginning and end are missing, the axiom in (2) infers that it is an instance of
ProperInterval. Thatis because the nested universal quantification holds even if the knowledge graph contains
no individuals satisfying the universally quantified formula when substituted for the associated variables.

In Hobbs and Pan’s framework, this is correct because if the beginning and end of T are missing, then T is
interpreted as the interval [—o0, +00], which is indeed considered a proper interval.

Other axioms from [32] whose formulation is affected by this technical choice are those defining Allen’s temporal
relations. For example, the axiom defining intervalStart:

(3) Vrir2 [intervalStarts(T1, T2) <> (ProperInterval (T1) AProperInterval (T2)A
dio [hasEnd (£2, T1) A
V.1 [hasBeginning (tl, T1) <>hasBeginning (t1, T2) JA
Ve4 [hasEnd (t4, T2) —wbefore(t2,t4)]1]1)]

This axiom stipulates that if intervalStart holds between T1 and T2, then the end of T1 must exist; therefore,
it cannot be —oo or +o00. The other three endpoints can instead take infinite values, but this is consistent with the
definition in (3). If both beginnings are —oo, the two intervals indeed start at the same time. If only one beginning
is —oo, the first nested universal quantification is false, as it is satisfied only if either both beginnings do not exist
or both exist and coincide; this is correct, because in this case the intervals do not start simultaneously. If T2’s
end does not exist (i.e., it is interpreted as +00), the second nested universal quantification is true. This is correct
because T1’s end exists and therefore occurs before +o00, i.e., T2’s end. Finally, if T2’s end exists, the second nested
universal quantification is true only if T1’s end occurs before T2’s end, which is again correct.

We do not endorse [32]’s assumption that if an interval’s endpoints are missing, they should be interpreted as —oo
or +oc0. In our view, this assumption conflicts with the Open World Assumption, a cornerstone of RDF semantics.
In RDEF if a triple does not exist, its value is simply unknown. Accordingly, if an interval’s endpoint is missing, its
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value is just unknown: it could be —oco, +00, or a specific finite value. Only once the value becomes known, i.e.,
identified as —oo, +00, or a specific finite value, we must verify whether the knowledge graph still contains valid
information. Our axiomatization thus adheres to the Open World Assumption, so that all axioms from [32] affected
by the assumption of treating missing endpoints as infinite endpoints have been rewritten as shown below.

Indeed, the assumption of treating missing endpoints as infinite is, more broadly, connected to another gap in
Hobbs and Pan’s formalization, which we examine in further detail in the next section. In [32], endpoints cannot
be associated with specific values, whereas in the fragment of the Time Ontology shown in Figure 1, the datatype
property inXSDDateTime does associate instants with specific xsd: dateTime values. Explicitly representing
—o0 or 400 would thus require special xsd : dateTime values that “posit instants at positive and negative infinity”
(cit. from [32]), an alternative also advocated by Hobbs and Pan. However, this is not possible because every valid
xsd:dateTime value does correspond to a specific point in time; in other words, the xsd: dateTime datatype
does not provide “dummy” values that could be used to denote —oco and +oco. Consequently, the current version
of the Time Ontology is actually unable to represent infinite intervals, and the only viable solution appears to be
extending the ontology’s vocabulary to include additional RDF resources that explicitly represent —oo and +oc0.
Although this is not strictly within the scope of this paper, which focuses only on the RDF resources shown in
Figure 1, in Section 7 below we will propose a possible extension of the Time Ontology vocabulary for this purpose.

The following subsection presents our alternative first-order logic axiomatization for the RDF resources shown
in Figure 1. In addition to adhering to the Open World Assumption, as explained above, our first-order logic axiom-
atization also includes axioms explicitly defining the semantics of equals, which in [32] is represented using the
mathematical operator “="" but whose semantics is left implicit, as pointed out at the beginning of this section.

4.1. A first-order logic axiomatization for the semantics of the RDF resources in Figure 1

This section presents the first-order logic axiomatization adopted in this paper. We begin with the first-order logic
axioms that are formalized as RDFS or OWL axioms in the current official version of the Time Ontology. These are
listed in Table 1; for readability, the prefix “t ime :” has been omitted from the RDF resource names in the table.

1. Ve [Instant (t)— TemporalEntity (t)] Instant rdfs:subClassOf TemporalEntity

2. Vil[Interval (I)— TemporalEntity (I)] Interval rdfs:subClassOf TemporalEntity

TemporalEntity owl:unionOf

3. Vr [TemporalEntity (T)—(Instant (T)V Interval (T))] (Instant Interval)
4 V1t [hasBeginning (T, t)— hasBeginning rdfs:domain TemporalEntity
’ (TemporalEntity (T) AInstant (t))] hasBeginning rdfs:range Instant

haskEnd rdfs:domain TemporalEntity

5. V1t [hasEnd (T, t)—(T 1Entity (T) A Instant (t
rt [hasEnd( )= (Temporalkntity (T) nstant (t))] hasEnd rdfs:range Instant

inside rdfs:domain Interval

6. Vit [inside (T, t)—(Interval (T) A Instant (t))] A )
’ inside rdfs:range Instant
7. Ve [ProperInterval (t)— Interval (t)] ProperInterval rdfs:subClassOf Interval
3 V1t [equals (T1, T2)— equals rdfs:domain TemporalEntity
’ (TemporalEntity (T1) ATemporalEntity (T2))] equals rdfs:range TemporalEntity
9 V1 [before(T1, T2)— before rdfs:domain TemporalEntity
: (TemporalEntity (T1l) ATemporalEntity (T2))] before rdfs:range TemporalEntity
10 Vit [after (T1, T2)— after rdfs:domain TemporalEntity
' (TemporalEntity (T1l) ATemporalEntity (T2))] after rdfs:range TemporalEntity
11. V11,12 [after (T1, T2)<>before (T2, T1)] before owl:inverseOf after
Table 1

First-order logic axioms implemented as RDFS and OWL axioms in the Time Ontology
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The axiomatization in [32] includes all axioms listed in Table 1, except for 8, 9, and 10, which specify domain and
range of the three predicates equals, before, and after. These three predicates are intended to define a basic
temporal algebra that closely mirrors those of the familiar mathematical operators “=", “<”, and “>”, with the only
difference being that the latter apply to integers, whereas equals, before, and after apply to temporal entities.

As noted above, [32] does not use equals but instead the corresponding mathematical operator “=", without
providing an explicit axiomatization of its semantics. The predicate after is likewise not axiomatized in [32], since
axiom 11 in Table 1 allows every statement involving after to be rewritten as an equivalent statement involving
before. By contrast, before is axiomatized: [32] defines it as anti-reflexive, anti-symmetric, and transitive. The

anti-reflexivity of be fore is axiomatized in [32] as follows:
(4) Vrir2[before(T1l,T2)——-equals(T1,T2)]

However, in our view, this axiom only indirectly encodes the anti-reflexivity of be fore, which should instead be
formalized as in axiom “1.” in Table 2: a temporal entity cannot be related to itself via be fore. The transitivity of
before is instead formalized in [32] as in axiom “2.”, and we add a corresponding axiom to enforce the transitivity
of equals (axiom “4.”). We chose not to import the axiom from [32] enforcing before to be anti-symmetric,
since this property can now be derived'® from axioms “1.” and “2.”. Similarly, we omit an axiom asserting the re-
flexivity of equals (i.e., that every temporal entity is equal to itself), as it would only introduce unnecessary triples
into the knowledge graph. Finally, we add axioms “5.”—“8.” to assert that the properties before, hasBeginning,
hasEnd, and inside are preserved under substitution of equals in either of their arguments. For example, un-
der the parallel between equals and before with the mathematical operators “=" and “<”, axiom “5.” states
both “((t1<t2)A(t2=t3))— (tl<t3)”and “((t1=t2) A (t2<t3))— (t1<t3)”. Note that (4) now fol-
lows from axioms “1.”, “3.”, and “5.”: if both before (T1, T2) and equals (T1, T2) hold, axiom “3.” yields
equals (T2, T1), and axiom “5.” then yields before (T1, T1), which contradicts axiom “1.”.

1. Vr[—-before (T, T)]

2. Vri1,12,13 [ (before (T1, T2) Abefore (T2,T3))— before (T1, T3)]

3. Vri,m2 [equals (T1, T2)—equals (T2, T1)]

4. Vri,r2,13 [ (equals (T1, T2) A equals (T2, T3)) — equals (T1, T3)]

5. V11203 [ ((equals (T1, T2) Abefore(T2,T3))V (before(T1, T2) A equals (T2, T3)))—before (T1, T3)]

Vri,r2,13 [ ((equals (T1,T2) A hasBeginning (T2, T3))V (hasBeginning (T1, T2) A equals (T2,T3)))—

6. hasBeginning (T1, T3)]
7. V11,712,713 [ ((equals (T1, T2) A hasEnd (T2, T3) )V (hasEnd (T1, T2) A equals (T2, T3))) — hasEnd(T1, T3)]
8. Vr1112,3 [ ((equals (T1, T2) A inside (T2, T3))V (inside (T1, T2) A equals (T2, T3)))— inside (T1, T3)]

Table 2

Axiomatization of before and equals. before is anti-reflexive while equals is symmetric (axioms “1.” and “3.”). Both are transitive
(axioms “2.” and “4.”). All properties are preserved under substitution of equals in either argument (axioms “5.”-“8.”).

The remaining first-order logic axioms defining our semantics are shown in Table 3 and Table 4, with the latter
specifying the axioms of Allen’s temporal relations.

Axiom “1.” in Table 3 represents the key difference between [32]’s axiomatization and the one adopted in this
paper. As explained above, in our axiomatization we do not represent infinite endpoints as missing endpoints;
instead, we require that every temporal entity always has endpoints. These endpoints can be associated with a
specific xsd:dateTime value via the datatype property inXSDDateTime, or with —co or +oo via the RDF

161f both be fore (T1, T2) and before (T2, T1) hold, transitivity would imply be fore (T1, T1) and before (T2, T2), both of which
contradict axiom “1.”
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resources discussed below in Section 7, but they may also exist in the ontology without any associated value, i.e.,
their value can remain unknown. In other words, axiom “1.” in Table 3 does not itself add specific knowledge about
the temporal entities; it merely states that every temporal entity necessarily has two endpoints, whose values could
even be unknown. This contrasts with [32], where a temporal entity may lack one or both endpoints. Axiom “1.”
affects the formulation of subsequent axioms, which assume the existence of both endpoints.

Axioms ‘“2.”-*5. in Table 3 are imported from [32] as they are: if a temporal entity is an instant, its beginning
and end are the instant itself; if a temporal entity has multiple beginnings/ends, these beginnings/ends are required
to be equal. Axiom “6.” is also imported from [32] as it is: every proper interval begins before it ends.

Axiom ““7.”, by contrast, is only slightly modified from [32]: in the original, it is defined for the class Interval,
but since Interval is not disjoint from Instant (instants are treated in the ontology as intervals of zero du-
ration), we decided to generalize it to the broader class TemporalEntity. Axiom “7.” therefore states that a
temporal entity cannot end before it begins. In addition, we introduce axioms “8.” and “9.”, which state, respec-
tively, that for every temporal entity with beginning tb and end te, if another temporal entity t occurs before tb,
then it also occurs before t e; symmetrically, if t e occurs before t, then tb also occurs before t. These two axioms
are not included in [32]’s axiomatization; however, as we will show later in Subsection 6.1, they are necessary to
detect certain invalid knowledge graphs that are, therefore, not recognized as inconsistent in [32]’s axiomatization.

Axiom “10.” is our variant of the following axiom from [32]:

(5) Vrir2[ before(T1,T2)—
Jipte [ (hasBeginning (T2, tb) AhasEnd(T1, te))—before(te,tb)]]

This axiom states that if two temporal entities are related by the property before, then the beginning of the first
entity and the end of the second entity must exist (hence, according to the representational choice in [32], they are
not infinite), and the former occurs before the latter. In our framework, however, the beginning and end of every
temporal entity always exist, as guaranteed by axiom “1.” in Table 3. Therefore, the existential quantifiers in (5) can
be replaced with corresponding universal quantifiers in the antecedent, yielding axiom “10.” in Table 3. Finally, the
axiom in “11.”, for the property inside, is imported from [32] as it is.

1. Vo [TemporalEntity (T) = Jipre [hasBeginning (T, tb) A hasEnd (T, te)]

2. Ve [Instant (t) 4> hasBeginning (t, t)]

3. Vi [Instant (t) <> hasEnd(t, t)]

4, Vrt1,t2 [(TemporalEntity (T) A hasBeginning (T, t1) A hasBeginning (T, t2))— equals(tl,t2)]
5. Vo162 [(TemporalEntity (T) A hasEnd (T, t1) AhasEnd (T, t2)) — equals (tl, t2)]

6. V1ibre [ (ProperInterval (T) A hasBeginning (T, tb) A hasEnd(T, te)) — before (tb, te)]

7. V1ibte [ (TemporalEntity (T) A hasBeginning (T, tb) A hasEnd (T, te)) — —before (te, tb) ]

8. Vitbter [ (TemporalEntity (T) A hasBeginning (T, tb) A hasEnd (T, te) Abefore (t,tb)) — before (t,te)]

9. Vrib,tet [ (TemporalEntity (T) A hasBeginning (T, tb) A hasEnd (T, te) Abefore (te,t)) — before (tb, t) ]

10. V11,12,tbte [ (before (T1, T2) A hasBeginning (T2, tb) A hasEnd (T1, te)) = before (te, tb) ]
11. Vrttote [ (inside (T, t) A hasBeginning (T, tb) A hasEnd (T, te)) — (before(tb, t) Abefore(t, te))]
Table 3

First-order logic axioms employed in this paper, adapted from [32].

Table 4 presents the final axioms of our first-order logic axiomatization; these axioms define the semantics of
the property intervalEquals and the six “primary” Allen temporal relations. All axioms, except the one for
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intervalBefore, have been modified'” compared to their formulation in [32], based on the assumption that
every temporal entity always has both endpoints, even if the values of these endpoints may be unknown. Additional
axioms, similar to axiom “11.” in Table 1, which states that before and after are inverse relations, enforce that
intervalAfter isthe inverse of intervalBefore, intervalMetBy is the inverse of intervalMeets,
and so on; these axioms are omitted from Table 4 for brevity but are available in the GitHub repository.

V71,72 [intervalEquals (T1, T2) —

intervalEquals (ProperInterval (T1l) AProperInterval (T2) A equals(T1,T2))]

Vri,m2 [intervalBefore (T1, T2) —

intervalBefore (ProperInterval (T1) A ProperInterval (T2) Abefore(T1,T2))]

V11,72,tbte [ (IntervalMeets (T1, T2) A
intervalMeets hasEnd (T1, te) A hasBeginning (T2, tb))—
(ProperInterval (T1) AProperInterval (T2) A equals (tb,te))]

V71,72,tb1,tel,tb2,te2 [ (intervalOverlaps (T1, T2) A hasBeginning (T1, tb1l) A
hasEnd (T1l, tel) A hasBeginning (T2, tb2) A hasEnd (T2,te2))—

intervalOverlaps (ProperInterval (T1) AProperInterval (T2)A
before (tbl, tb2) Abefore (tb2,tel) Abefore (tel,te2))]
Vo1, r2,tblteltb2,te2 [ (intervalStarts (T1, T2) A hasBeginning (T1, tbl) A
it 1Start hasEnd (T1,tel) A hasBeginning (T2, tb2) A hasEnd (T2, te2)) —
interva arts (ProperInterval (T1) A ProperInterval (T2)A
equals (tbl, tb2) Abefore (tel,te2))]
VT1,72,tb1,tel,tb2,te2 [ (intervalDuring (T1, T2) A hasBeginning (T1, tbl) A
. . hasEnd (T1, tel) A hasBeginning (T2, tb2) A hasEnd (T2,te2))—
intervalDuring

(ProperInterval (T1) A ProperInterval (T2)A
before (tb2, thl) Abefore (tel, te2))]

Vr1,12,tb1,tel,tb2,te2 [ (intervalFinishes (T1, T2) A hasBeginning (T1, tbl) A
hasEnd (T1,tel) A hasBeginning (T2, tb2) A hasEnd (T2, te2)) —
(ProperInterval (T1) A ProperInterval (T2)A
equals (tel, te2) Abefore (tb2,tbl))]

intervalFinishes

Table 4
First-order logic axioms representing the semantics of intervalEquals and the six “primary” Allen’s temporal relations

To summarize, this section has shown that the current version of the Time Ontology implements only a small subset
of the original axiomatization defined in [32]. Specifically, while all axioms listed in Table 1 have been implemented
as RDFS or OWL axioms, those corresponding to the axioms in Table 2, Table 3, and Table 4 remain unimplemented.

Moreover, it is not immediately clear how the unimplemented axioms from [32], or their versions in Table 2,
Table 3, and Table 4, could be formalized in RDFS or OWL, if at all. This, as noted above, may explain their
absence from the current official version of the Time Ontology.

In this paper, we propose formalizing all axioms from the four tables in SHACL; as will be shown below, this
translation is both intuitive and straightforward.

Before presenting the SHACL counterparts of the first-order logic axioms in the four tables, however, the next
section will illustrate how to associate xsd : dateTime datatypes with instances of the class Instant. Datatypes

"Furthermore, note that all axioms in Table 4 are expressed as implications, whereas the corresponding axioms in [32] are bi-implications.
The reverse implications could be added to Table 4, but we chose not to do so, as they are irrelevant to the task of validating the resources in
Figure 1. Section 7 below elaborates further on these issues and, in particular, explains that SHACL-SPARQL rules should be task-oriented: to
avoid unnecessary computations, only the minimal set of rules required for the inference task at hand should be defined.
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are essential for practical use, as applications rely on standard types such as integers, strings, or, in the case of the
Time Ontology, xsd:dateTime. This is the sole datatype considered in Figure 1; it is associated with instances
of Instant through the datatype property inXSDDateTime.

The next section also introduces initial SHACL shapes for validating knowledge graphs involving the
inXSDDateTime property. Crucially, it demonstrates that SHACL shapes alone are insufficient for this task. To
achieve the intended validations, most of the first-order logic axioms from the four tables will be implemented as
SHACL-SPARQL rules in the subsequent sections.

5. Using SHACL to validate the Time Ontology — why SHACL shapes alone do not suffice

This section focuses on the validation of the datatype property inXSDDateTime, which, as noted at the end of
the previous section, enables the use of the Time Ontology in practical applications, which requires working with
standard datatypes such as xsd: dateTime, the range of inXSDDateTime.

Therefore, the very first SHACL shape to be imposed is the one in (6), which flags as invalid any object of
inXSDDateTime that does not conform to the xsd:dateTime datatype.

(6) [rdf:type sh:NodeShape;
sh:targetSubjectsOf time:inXSDDateTime;
sh:property[sh:path time:inXSDDateTime;
sh:datatype xsd:dateTime;
sh:message "Invalid datatype: xsd:dateTime is required"]].

Furthermore, since, as mentioned in footnote 14 above, the timezone is optional for xsd : dateTime, for practical
reasons we also added the SHACL shape in (7), which requires the objects of inXSDDateTime to specify the
timezone. (7) checks whether the timezone is unspecified by using the SHACL Core property sh:pattern!s.
(7) [rdf:type sh:NodeShape;
sh:targetSubjectsOf time:inXSDDateTime;
sh:property[sh:path time:inXSDDateTime;
sh:pattern "(Z| (\\+1-) [0-9]12:[0-9]2)5";
sh:message "Invalid datatype: it does not specify the timezone."]].

Next, a SHACL shape is introduced to ensure that only a single xsd: dateTime value is assigned to each instant
via inXSDDateTime. SHACL Core provides the property sh :maxCount !, which allows setting an upper limit
on the number of values that can be assigned to an RDF resource. This enables the implementation of the desired
shape, as any additional assignments of the property will violate the constraint.

(8) [rdf:type sh:NodeShape;
sh:targetSubjectsOf time:inXSDDateTime;
sh:property[sh:path time:inXSDDateTime;
sh:maxCount 1;
sh:message "Invalid Instant: multiple xsd:dateTime values are
associated with this node."]].

The three SHACL shapes in (6), (7), and (8) are written in SHACL Core. As noted in the introduction, SHACL
Core defines a set of built-in constraints for validating RDF data, e.g., predefined constraint types such as datatype
restrictions and cardinality. However, it lacks the expressiveness required for more advanced validation checks.

One example illustrating the expressivity limitations of SHACL Core is the validation of instants that are asso-
ciated with specific xsd:dateTime values and are connected via the properties equals, before, or after.
For equals, the two xsd:dateTime values must be identical; for before and after, they must respect the
corresponding temporal order. For instance, the following triples are invalid:

8https://www.w3.org/TR/shacl/#PatternConstraintComponent
Yhttps://www.w3.org/TR/shacl/#MaxCountConstraintComponent
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Q) :i1 time:inXSDDateTime "2024-01-01T00:00:00Z"" "xsd:dateTime.
:1l time:equals :i2.
:12 time:inXSDDateTime "2025-01-01T00:00:00z"" "xsd:dateTime.

It is not possible in SHACL Core to verify that the xsd : dateTime values associated with two nodes connected by
equals are identical, nor to check the temporal ordering required by before or after. Such cross-node value
comparisons fall outside the expressive power of SHACL Core.

In contrast, SHACL-SPARQL can naturally handle such cases. The two SHACL-SPARQL shapes that validate
pairs of instants connected by either equals or before and each associated with an xsd:dateTime value via
the property inXSDDateTime, are shown in (10). A similar shape can also be defined for after

(10) [rdf:type sh:NodeShape;
sh:targetSubjectsOf time:inXSDDateTime;
sh:spargl [sh:prefixes ...;
sh:select """SELECT S$this ?dtl ?2dt2
WHERE{$this time:equals ?i2. FILTER(Sthis!=?12).
Sthis time:inXSDDateTime ?dtl. ?i2 time:inXSDDateTime ?dt2.
FILTER (?2dtl!=2dt2)}""";
sh:message "Invalid Instant {S$this}: this instant is declared equal
to another instant, but the two instants have different
values, {?dtl} and {?dt2}."]11].

[rdf:type sh:NodeShape;
sh:targetSubjectsOf time:inXSDDateTime;
sh:spargl [sh:prefixes ...;
sh:select """SELECT S$this ?dtl 2dt2
WHERE {$Sthis time:before ?i2. FILTER(Sthis!=?1i2).
Sthis time:inXSDDateTime ?dtl. ?i2 time:inXSDDateTime ?2dt2.
FILTER (?dtl>=2dt2)}""";
sh:message "Invalid Instant {S$Sthis}: this instant is declared to occur
before another instant, but it occurs at {?dtl} while
the other occurs at {2dt2}."]1]1.

SHACL-SPARQL shapes incorporate SPARQL queries using the SELECT-WHERE structure. Consequently, these
shapes tend to be more verbose than SHACL Core shapes. To enhance readability and maintain focus, we will
specify only the four key components of SHACL-SPARQL shapes throughout this paper: sh:target, SELECT,
WHERE, and sh:message. The shapes in the GitHub repository, being executable, are instead provided in full.
For example, the shape in (10) will be represented in a more compact form as:

(I1) sh:targetSubjectsOf time:inXSDDateTime;
SELECT $this 2dtl 2dt2
WHERE{$this time:equals ?i12. FILTER(Sthis!=?12).
Sthis time:inXSDDateTime ?dtl. ?i2 time:inXSDDateTime ?dt2.
FILTER(?dtl!=2dt2)}""";
sh:message "Invalid Instant {$this}: this instant is declared equal to another
instant, but the two instants have different values, {?dtl} and {?2dt2}."

sh:targetSubjectsOf time:inXSDDateTime;
SELECT S$this ?2dtl ?2dt2
WHERE {$this time:before ?i2. FILTER(Sthis!=?i2).
Sthis time:inXSDDateTime ?dtl. ?i2 time:inXSDDateTime ?dt2.
FILTER (?dtl1>=2dt2)}""";
sh:message "Invalid Instant {$this}: this instant is declared to occur before
another instant, but it occurs at {?dtl} while the other occurs at {2dt2}."
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Let us now consider more complex knowledge graphs that also include the properties hasBeginning and
hasEnd. These properties have TemporalEntity as their domain and Instant as their range; therefore, any
RDF resource occurring as their object can be inferred to be an instance of Instant. Moreover, since Instant is
a subclass of TemporalEntity, instances of Instant may themselves occur as subjects of hasBeginning
and hasEnd. Thus, we can obtain paths of hasBeginning and hasEnd properties of arbitrary length, that is,
chains of instants connected by these two properties. If two of these instants are associated with an xsd:dateTime
value, these values must, of course, be identical.

An example of such a chain of instants is shown in Figure 1. The knowledge graph in the figure should be detected
as invalid because tel, te2, te3, and te4 are all inferred to be instances of Instant; consequently, tel and
te4 can only be associated with the same xsd: dateTime value, yet in Figure 1 they are not.

"2025-01-01T0C:00:00Z" "2024-01-01T00:00:002"
inXSDDateTime hasBeginning hasBeginning __ hasEnd ~ inXSDDateTime
tel te2 te3 ted

Fig. 2. Invalid temporal entities, inferred as instants, connected by a path of hasBeginning and hasEnd properties.

This validation check can be enforced by the SHACL-SPARQL shape in (12), which is capable, more generally,
of detecting paths involving an arbitrary number of hasBeginning and hasEnd properties and ending with
an instant associated with an xsd:dateTime value. SPARQL 1.1 provides nine operators for defining regular
expressions over properties, known as “SPARQL 1.1 Property Paths”?°. Thus, an arbitrary path of hasBeginning
and hasEnd properties ending with an instant associated with an xsd:dateTime value can be represented by
the regular expression (time:hasBeginning|time:hasEnd)+/time:inXSDDateTime.

(12) sh:targetSubjectsOf time:inXSDDateTime;
SELECT $this 2dtl 2dt2
WHERE{Sthis (time:hasBeginning|time:hasEnd)+/time:inXSDDateTime ?dt2.
Sthis time:inXSDDateTime ?dtl. FILTER (?dtl!=2dt2)}
sh:message "Invalid Instant {$this}: this instant is declared equal to another
instant, but the two instants have different values: {?2dtl} and {2dt2}."

Nevertheless, it was indeed quite straightforward to write a SHACL-SPARQL shape that invalidates knowledge
graphs such as the one in Figure 2, i.e., graphs that contain only arbitrary paths of hasBeginning and hasEnd
properties oriented in the same direction. This ensures that each temporal entity along the path is an instance of
Instant, since it occurs as the object of either hasBeginning or hasEnd.

Conversely, let us now consider the pattern in Figure 3, which depicts a knowledge graph containing an arbitrary
number of temporal entities connected by a “zig-zag” path of hasEnd properties. By “zig-zag” we mean that the
hasEnd properties alternate in direction, i.e., they can be traversed both forward and backward along the path.

te2 ted
) e
"2024-01-01T00:00:002" hasEnd 3 hasEnd ‘» "2025-01-01T00:00:002Z"
inXSDDateTime \ hasEnd hasEnd / inXSDDateTime
Kl
tel te3 teb ten

Fig. 3. Temporal entities connected by a “zig-zag” path of hasEnd properties. The knowledge graph is invalid only if all entities along the path
are instances of Instant.

2Ohttps://www.w3.org/TR/sparql11-property-paths
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Unlike the previous case, in Figure 3 it is unknown whether all temporal entities along the path are instances of
Instant. In particular, we cannot determine whether te3 and teb5 are instants, since they occur as the subject of
hasEnd rather than as the object, and the domain of hasEnd is the more general class TemporalEntity.

However, if all temporal entities in the path, including te3 and te5, are indeed instances of Instant, either
because this is explicitly asserted or because it can be inferred (for example, from their occurrence as objects of
other hasBeginning or hasEnd properties), then the knowledge graph is invalid. In this case, all these instants
must share the same xsd: dateTime value, yet in Figure 3 they do not.

It is not possible to define a SHACL-SPARQL shape that detects this invalid pattern for an arbitrary number
of nodes using SPARQL 1.1 Property Path operators, even though one such operator (“~”’) allows traversal in the
reverse direction. SPARQL 1.1 Property Paths only permit the composition of regular expressions over the properties
in the path but do not allow posing additional constraints on the nodes of the path, i.e., the RDF resources connected
by those properties, which, in the pattern under scrutiny, must all be verified as instances of Instant.

To implement the required validation check, the expressivity of the SPARQL 1.1 Property Path operators would
need to be extended to allow constraints to be imposed on the RDF resources traversed by the property path. Such
an extension could be considered for future versions of SPARQL.

With the current SPARQL 1.1 recommendation, instead, a practical solution for validating the pattern in Figure 3
is to first add inference rules ensuring that, if all temporal entities in the path are instants, they are all inferred to
be equal. This can be achieved by adding SHACL-SPARQL rules that implement axioms “3.” and “5.” in Table 3.
Once these inferences are applied, the first SHACL shape in (11) can detect that the knowledge graph is invalid,
since tel and ten would be asserted as equal while being associated with two distinct xsd : dateTime values.

This approach is applied in the following sections, where we implement the axioms in the four tables from the
previous section as SHACL-SPARQL shapes and SHACL-SPARQL rules. Executing the shapes on the knowledge
graphs inferred through the rules yields the intended validation.

In addition, it is worth noting that even when a SHACL-SPARQL shape can be written directly, as in the case
of Figure 2, doing so is not always desirable. Regular expressions constructed using SPARQL 1.1 Property Paths
operators can quickly become long and complex, making SHACL shapes difficult to read, debug, and maintain,
which may hinder the practical adoption of the SHACL standard. For example, the regular expression in (12),
although used to validate a relatively simple pattern in knowledge graphs, is already somewhat complex as it involves
three properties combined with three SPARQL 1.1 Property Paths operators.

Decoupling validation into two sequential steps (first inference, then validation using simple SHACL shapes) is
therefore not only necessary in some cases but also advantageous in many others. This approach results in clearer
and more modular validations, improves maintainability, and thus facilitates the rapid development and adaptation
of SHACL shapes for evolving knowledge graphs.

6. Implementing the first-order logic axioms from Section 4 in SHACL

The previous section demonstrated that SHACL-SPARQL shapes alone are insufficient to validate arbitrary property
paths when additional constraints on the RDF resources along the path must also be enforced. This limitation was
illustrated using a “zig-zag” pattern of hasEnd properties: if all RDF resources along the pattern are instances of
the class Instant, they must all be associated with the same xsd:dateTime value. However, it is not possible
to validate such patterns because the SPARQL 1.1 Property Path operators only define regular expressions over the
properties in the path, while they do not allow constraining the nodes of the path, i.e., the RDF resources connected
by those properties. As a result, these nodes remain unconstrained. Thus, in the investigated “zig-zag” pattern, it
cannot be verified whether they are all instances of the class Instant.

To address the expressivity limitations of SHACL shapes, the validation of knowledge graphs is decoupled into
two sequential®! steps: (1) inference and (2) validation.

21 A similar recent approach is presented in [57], which proposes an algorithm that translates SHACL recursive constraints and OWL 2 QL
inferences into stand-alone, non-recursive SHACL. However, this approach does not appear to scale to other inference profiles, such as additional
OWL profiles or SHACL-SPARQL rules. In contrast, we advocate a modular approach in which inference and validation are clearly separated.
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In this paper, SHACL-SPARQL rules are employed for the inference step. However, in general, the inferences
could be performed using any other reasoning language for knowledge graphs, e.g., OWL. In other words, while
SHACL-SPARQL rules provide a convenient means to represent the first-order logic axioms presented above in
Subsection 4.1, we do not claim that they should always be used. In some cases, OWL may provide a simpler yet
effective solution, while in other cases, even SHACL-SPARQL rules may prove insufficient, necessitating the use
of alternative, more expressive reasoning languages.

Let us now illustrate how the semantic characterization presented in Subsection 4.1 is implemented as SHACL-
SPARQL rules and SHACL shapes.

It is evident that the properties equals, before, and after define a basic temporal algebra on the class
Instant. This algebra is straightforward to understand because the semantics of these three properties closely
correspond to those of the well-known mathematical operators “=", “<”, and “>", the only difference being that the
latter operate on integers, while equals, before, and after operate on instants.

Indeed, this basic temporal algebra can be defined solely in terms of the properties equals and before, be-
cause, thanks to axiom “11.” in Table 1, every triple involving the property after can be transformed into a
corresponding triple involving be fore. Without axiom “11.”, it would be necessary to define, for after, axioms
analogous to those for equals and before.

In light of this, the first SHACL-SPARQL rule presented in this paper is shown in (13). SHACL-SPARQL rules
are similar to SHACL-SPARQL shapes, but instead of using SELECT, they employ CONSTRUCT to generate triples
that are added to the knowledge graph, rather than producing error messages. The rule in (13) identifies pairs of RDF
resources, Sthis and ?te, connected by after, and adds a triple linking ?te to $this viabefore.

Note that (13) implements only the implication from after to before in axiom “11.” of Table 1, not the full
bi-implication. The reverse implication is unnecessary, since, as explained above, the basic temporal algebra relies
only on the properties equals and before.

(13) sh:targetSubjectsOf time:after;
CONSTRUCT{?te time:before S$this}
WHERE {$Sthis time:after ?te}

All first-order logic axioms in Table 1, with the exception of axiom “3.”, can be readily converted into SHACL-
SPARQL rules that capture the inferences implied by RDF Schema. For instance, the rules implementing the
rdfs:domain and rdfs:range properties are shown below. Rules for the other RDF Schema properties are
implemented similarly and are available in the GitHub repository.

(14) sh:targetSubjectsOf rdfs:domain;
CONSTRUCT{?s rdf:type 7?c}
WHERE{S$this rdfs:domain ?c. 2s $this 20}

sh:targetSubjectsOf rdfs:range;
CONSTRUCT{?0 rdf:type ?c}
WHERE{$this rdfs:range ?c. ?s $this 20}

The SHACL-SPARQL rules implementing the properties of RDF Schema are, of course, not specific to the Time
Ontology and can be reused in any ontology that employs the rdfs prefix. Similarly, one could re-implement any
OWL property; for example, (13) could be expressed as a general SHACL rule on the property owl: inverseOf.
However, while we accept re-implementing as SHACL-SPARQL rules the few RDFS properties that enable infer-
ences, in the formalization presented in this paper we deliberately avoid defining SHACL-SPARQL rules over OWL
properties, so as to maintain a clear separation between SHACL and OWL.

Concerning axiom “3.” in Table 1, we decided not to implement it because it only adds information that is
irrelevant for validating the resources in Figure 1. The axiom asserts that a temporal entity can only be an instant or
an interval (or both). Such an assertion would only be invalid if it contradicted a statement that the temporal entity is
not an instant or an interval; for example, if it were an instance of a class disjoint with them. However, with the four
classes in Figure 1, i.e., TemporalEnt ity and its subclasses, it is not possible to make such a negated assertion.
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Let us now illustrate how the axioms in Table 2 have been implemented in SHACL. The first axiom is the only
one that entails a negated literal. Consequently, this axiom concerns logical consistency, as it infers a triple that does
not hold; if the triple is instead present in the knowledge graph, a logical inconsistency must be reported.

As noted in the Introduction, logical consistency can be regarded as a form of validation under the assumption
that anything inconsistent is also invalid. This assumption is reasonable in many use cases, although not in all (see,
e.g., [17], where inconsistencies can be explicitly represented and thus are not considered invalid).

Accordingly, axiom “1.” in Table 2 is implemented as a SHACL-SPARQL shape, as follows:

(15) sh:targetSubjectsOf time:before;
SELECT $this
WHERE {$this time:before $this}
sh:message "Invalid triple ‘{$this} time:before {S$this}’:
time:before is anti-reflexive."

All other first-order logic axioms in Table 2 are implemented as SHACL-SPARQL rules. For example, axiom “2.”,
which establishes the transitivity of before, corresponds to the rule in (16). Axioms “3.” and “4.”, which capture
the symmetry and transitivity of equals, are implemented in a similar manner. These are omitted here for brevity,
but the reader can find them in the GitHub repository.

(16) sh:targetSubjectsOf time:before;
CONSTRUCT{S$this time:before ?te2}
WHERE{Sthis time:before ?tel. ?tel time:before ?te2}

The remaining four axioms in Table 2, which enforce the preservation of the properties before, hasBeginning,
hasEnd, and inside under substitution of equals in either argument, can be implemented with a single
SHACL-SPARQL rule, as follows:

(17) sh:targetSubjectsOf time:equals;
CONSTRUCT{?T1 ?P ?T3}
WHERE {VALUES ?P {time:before time:hasBeginning time:hasEnd time:inside}
{$this time:equals ?T2. ?T2 2P ?T3. BIND(Sthis AS 2T1) }UNION
{$this time:equals ?T3. ?T1 ?P $this. BIND(S$this AS ?T2)}}

The SPARQL 1.1 VALUES clause is used to range over the four properties with the variable ?P. The UNION
clause allows representing the disjunction in the antecedent; however, since the variable ?this occurs in different
arguments of ?P in each disjunct, it must be bound to a separate variable using the SPARQL 1.1 BIND operator.

We now illustrate how the axioms in Table 3 have been implemented in SHACL. Table 3 also includes an axiom
that entails a negated literal, namely axiom “7.”. This axiom states that the end of a temporal entity cannot occur
before its beginning. In terms of the Time Ontology vocabulary, this means not only that the triple corresponding to
before (te, tb) cannot be asserted in the knowledge graph, but also that te, the temporal entity’s end, cannot
be associated with an xsd:dateTime value that is lower than the xsd:dateTime value of its beginning tb.
This latter constraint is enforced by the following SHACL-SPARQL shape:

(18) sh:targetClass time:TemporalEntity;
SELECT $this
WHERE{$this time:hasBeginning ?tb. $this time:hasEnd ?te.
?tb time:inXSDDateTime 7?dtb. ?te time:inXSDDateTime ?dte.
FILTER (?dte<?dtb) }
sh:message "Invalid temporal entity {$this}: it ends before it begins."

On the other hand, there is no need to define an additional SHACL shape to check whether the triple corresponding
tobefore (te, tb) occurs in the graph. If such a triple were present, axiom “8.” would derive before (te, te),
while axiom “9.” would derive before (tb, tb), both of which would contradict axiom “1.” in Table 2.
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All other first-order logic axioms in Table 3 have been implemented as SHACL-SPARQL rules. Axiom “1.”
differs from the other remaining axioms in Table 3 in that it involves existential quantifiers, which appear in the
consequent of the implication. To translate existential quantifiers occurring in the consequent of an implication,
SHACL-SPARQL, like other well-known logic programming languages whose syntax does not include existential
quantifiers, such as Prolog, typically requires Skolemization of these quantifiers into new, explicit individuals of
the domain. In SHACL-SPARQL, these are represented as new anonymous RDF resources, also known as “blank
nodes”, which can be created in the WHERE clause using the function BNode.

Nevertheless, it is clear that creating two new nodes would be redundant when the beginning and end of a temporal
entity already exist in the knowledge graph. Similarly, if the temporal entity is an instance of the class Instant,
there is no need to create new blank nodes, since axioms “2.” and “3.” in Table 3 stipulate that the beginning and
end of an instant are the instant itself.

This is actually a common situation when working with knowledge graphs: it is frequently necessary to check
whether certain triples already exist in the knowledge graph and to create new blank nodes only if they do not.
SPARQL supports this conditional logic through a combination of: the OPTIONAL clause, which attempts to match
existing triples without failing the query if they are absent; the IF function, which enables if-else branches in the
WHERE clause; and the EXISTS and BOUND predicates, which test whether certain triples exist and whether a
variable is bound, respectively.

Using these operators, the rule corresponding to axiom “1.” in Table 3 can be encoded in SHACL-SPARQL as
shown below. Note that this rule also incorporates axioms “2.” and “3.”, specifically the implications that if t is an
instant, then its beginning and end are t.

(19) sh:targetClass time:TemporalEntity;
CONSTRUCT{S$this time:hasBeginning ?tb. S$this time:hasEnd ?te.
?tb a time:Instant. ?te a time:Instant}
WHERE {OPTIONAL{S$this time:hasBeginning ?tbopt}
BIND (IF (EXISTS{S$this a time:Instant}, Sthis,
IF (BOUND (?tbopt), ?tbopt,BNode () )) AS ?tb)
OPTIONAL{S$this time:hasEnd ?teopt}
BIND (IF (EXISTS{S$this a time:Instant}, Sthis,
IF (BOUND (?teopt), ?teopt,BNode () )) AS ?te)}

In (19), the OPTIONAL clauses attempt to match the beginning and end of $this. If these triples exist, the cor-
responding variables ?tbopt and ?teopt are bound to them; otherwise, they remain unbound. The first BIND
statements implement a three-branch conditional logic using IF, EXISTS, and BOUND. Specifically, for ?tb, the
query first checks whether $this is an instance of Instant using EXISTS; if so, ?tb is bound directly to
Sthis. If not, it checks whether ?tbopt was bound by the preceding OPTIONAL clause; if it was, ?tb is bound
to that existing beginning. If neither condition holds, a new blank node is created via BNode and bound to ?tb.
The same logic applies to ?te. In all cases, the CONSTRUCT clause asserts ?tb and ?te as the beginning and end
of $this (note that if ?tb and ?te already exist, the corresponding triples are simply reasserted) and as instances
of Instant. As it will be explained in Section 8 below, asserting them as instances of Instant ensures that the
SHACL-SPARQL rule in (19) does not loop infinitely.

All remaining axioms in Table 3, as well as those in Table 4, do not differ significantly from the axioms already
discussed. Their translation into SHACL-SPARQL rules is therefore implemented in a similar way. For example,
the SHACL-SPARQL rule corresponding to axiom “11.” in Table 3 is the following:

(20) sh:targetSubjectOf time:inside;
CONSTRUCT{?tb time:before ?t. ?t time:before ?te}
WHERE{$this time:inside ?t. $this time:hasBeginning ?tb. $this time:hasEnd ?te}

The axiom associated with intervalDuring in Table 4 is instead implemented as follows:
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(21) sh:targetSubjectOf time:intervalDuring;
CONSTRUCT{S$this a time:ProperInterval. ?T2 a time:ProperInterval.
?tb2 time:before ?tbl. ?tel time:before ?te2}
WHERE{S$this time:intervalDuring ?T2. $this time:hasBeginning ?tbl.
Sthis time:hasEnd ?tel. ?T2 time:hasBeginning ?tb2. ?T2 time:hasEnd ?te2}

The SHACL-SPARQL rules for all other axioms can be found in the GitHub repository associated with this paper.

6.1. Examples

This section has shown how the semantic characterization axiomatized in first-order logic in Subsection 4.1 can
be implemented in SHACL. Before proceeding, it is useful to present some examples of the execution of SHACL-
SPARQL rules followed by SHACL shapes, to enhance understanding.

We begin with the “zig-zag” pattern shown in Figure 3, which illustrates that SHACL shapes alone are insufficient
to capture the semantics of the target first-order logic axiomatization. While Figure 3 depicts an abstract “zig-zag”
pattern with an arbitrary number of temporal entities tel...ten, we focus here on a knowledge graph with a finite
number of nodes, specifically, seven temporal entities tel...te7, encoded in RDF as follows:

(22) :tel time:inXSDDateTime "2026-01-01T00:00:00Z"" "xsd:dateTime.
:tel time:hasEnd :te2. :te3 time:hasEnd :te2. :te3 a time:Instant.
:te3 time:hasEnd :ted. :teb time:hasEnd :ted. :teb a time:Instant.
:te5 time:hasEnd :te6. :te7 time:hasEnd :teb6.
:te7 time:inXSDDateTime "2025-01-01T00:00:00Z"" "xsd:dateTime.

The temporal entities tel, te2, ted, te6, and te7 are all inferred as instances of Instant by the SHACL-
SPARQL rule defined on rdfs :domain and rdfs: range shown above in (14). All these temporal entities occur
either as the subject of inXSDDateTime or as the object of hasEnd. The two remaining temporal entities, te3
and teb, are instead explicitly asserted as instances of Instant in (22). Since tel, ..., te7 are all instants, the
SHACL-SPARQL rule shown above in (19) infers that their beginnings and ends are themselves. In other words,
the rule shown in (19) above adds the following triples to the knowledge graph:

(23) :tel time:hasBeginning :tel. :tel time:hasEnd :tel.
:te2 time:hasBeginning :te2. :te2 time:hasEnd :tel2.

:te7 time:hasBeginning :te”7. :te7 time:hasEnd :te7.

Next, the SHACL-SPARQL rule implementing axiom “5.” in Table 3, not shown in the paper but available on
GitHub, infers that the instants are pairwise equal, i.e., it adds the following triples to the knowledge graph:

(24) :tel time:equals :te2. :te3 time:equals :te2.
:te3 time:equals :ted. :teb time:equals :ted.
:teb5 time:equals :te6. :te7 time:equals :teb.

Then, since equals is a symmetric and transitive relation, as enforced by the SHACL-SPARQL rules correspond-
ing to axioms “3.” and “4.” in Table 2, all seven instants are inferred to be equal to one another. Finally, since tel
is associated with 1st January 2026 while te7 is associated with 1st January 2025 in (22), the first SHACL shape
in (11) detects that the knowledge graph is invalid.

The second example of an invalid knowledge graph is shown in Figure 4. In the figure, 12 and i 3 are, respectively,
the beginning and the end of the temporal entity tel. However, it is not specified whether tel is an instant or a
proper interval. All that can be inferred, given axiom “7.” in Table 3, is that 1 3 cannot occur before i2: either the
two instants are equal, or 12 occurs before i3.
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"2025-01-01T00:00:002" e

"2024-01-01T00:00:00Z"

\ hasBeginning hasEnd
inXSDDateTime\\ \ASDDateTime
i3

i1 before i2
Fig. 4. Invalid knowledge graph.

The SHACL shape associated with axiom “7.” in Table 3 is unable to invalidate the knowledge graph, since only
i3 is associated with an xsd: dateTime value. Nevertheless, the graph is indeed invalid because 12 occurs after
another instant, i1, which is associated with an xsd: dateTime value greater than the one associated with 1 3.

Once again, the SHACL-SPARQL rules make it possible to compute an inferred graph that is subsequently in-
validated by the SHACL shapes. Specifically, axiom “8.” in Table 3 derives that, since 11 occurs before 12, it must
also occur before 1 3. The second SHACL shape presented above in (11) then identifies the knowledge graph in Fig-
ure 4 as invalid, since the xsd : dateTime values associated with the two instants contradict the inferred before
property, which is directed from i1 to 1 3.

A similar, though more complex, example of an invalid knowledge graph, which nonetheless does not involve
xsd:dateTime values, is shown in Figure 5.

tel before te2
>

hasBeginning hasEnd hasBeginning hasEnd

il pefore 12 equals

i6

before

Fig. 5. Invalid knowledge graph.

Again, it is unknown whether the temporal entities tel and te2 are instants rather than temporal intervals. How-
ever, since tel occurs before te2, in light of axiom “10.” in Table 3, it is inferred that tel’s end instant occurs
before te2’s start instant. On the other hand, the SHACL-SPARQL rule in (17), enforcing the preservation of
be fore under the substitution of equals in either of its arguments, infers that 1 1 occurs before i 3. The follow-
ing triples are therefore added to the knowledge graph in Figure 5.

(25) :14 time:before :15. :il time:before :i3.

The SHACL-SPARQL rules corresponding to axioms “8.” and “9.” in Table 3 then infer that i4 occurs before 16,
15 occurs before 11, 11 occurs before 14, and i3 occurs before i5. Thus, a cyclic path of before properties
is inferred among 11, 14, and 1 5. From this, the SHACL-SPARQL rule in (16), which enforces the transitivity of
before, infers that 11, 14, and 15 occur before themselves; this is detected as invalid by the SHACL shape in
(15), which enforces the anti-reflexivity of before.

Note that the original first-order logic axiomatization in [32] is incapable of detecting the knowledge graph in
Figure 5 as invalid (or, more precisely, inconsistent), even though it should, since the graph, as noted above, does
not associate any instant with specific xsd:dateTime values and thus falls within the intended scope of [32]’s
axiomatization. This limitation arises because [32] does not include axioms corresponding to axioms “8.” and “9.” in
Table 3, which we added specifically to propagate the be fore assertions from the temporal entities’ beginnings to
their ends, and vice versa. As will also be explained in the next section, when dealing with abstract temporal entities,
i.e., entities for which it is unknown whether they are instants or proper intervals, it is not sufficient to verify that
their ends do not occur before their beginnings, as stated in axiom “7.” in Table 3 (taken from [32]) prescribes; it
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is also necessary to check whether a path of before, and possibly equals, properties exists from their ends to
their beginnings, since such a path would create a cycle, as illustrated in Figure 5. Axioms “8.” and “9.” have been
introduced precisely for this purpose, namely to propagate assertions from the beginnings to the ends and vice versa,
without directly linking these beginnings to the ends.

The final example of an invalid knowledge graph is shown in Figure 6. The graph in the figure involves only
properties representing Allen’s temporal relations.

. intervalOverlaps’. intervalFinishes intervalMetBy
pi2 pi3

-~ —~

pil pid

intervalContains

Fig. 6. Invalid knowledge graph involving properties representing Allen’s temporal relations.

First, the SHACL-SPARQL rule in (19) creates two instants for each of the four proper intervals involved, one
corresponding to the beginning and one to the end of the interval. The triples in (27) are added to the knowledge
graph. _:bl1,_:bl2, etc., are the blank nodes created by the rule in (19); to improve readability, their indices have
been adjusted only to correspond to the associated proper intervals. The rule also asserts these nodes as instances
of Instant and, when re-applied to them, infers that their beginnings and ends are themselves; however, the
additional triples resulting from this re-application are omitted from (27).

(26) :pil time:hasBeginning _:bll. :pil time:hasEnd _:bl2.
:pi2 time:hasBeginning _:b21. :pl2 time:hasEnd _:b22.
:pi3 time:hasBeginning _:b31. :pl3 time:hasEnd _:b32.
:pid4 time:hasBeginning _:b4l. :pl4 time:hasEnd _:b42.

The property intervalMetBy, from pi3 to pi4, and the property intervalContains, from pi4
to pil, are respectively converted into their inverse properties: intervalMeets, from pi4 to pi3, and
intervalDuring, from pil to pi4.

Now, the SHACL-SPARQL rules corresponding to the axioms in Table 4 can be applied. The rule for
intervalOverlaps infers that _:b11 occurs before _:b21, that _:b21 occurs before _:b12, and that
_:b12 occurs before _:b22. The rule for intervalFinishes infers that _:b22 is equal to _:b32 and
that _: 31 occurs before _:121. The rule for intervalMeets infers that _:b42 is equal to _:031. Finally,
the rule for intervalDuring infers that _:b41 occurs before _:b11 and that _:112 occurs before _:b42.
These triples are listed below, with each line showing the triples inferred by one of the four rules.

(27) _:bll time:before _:b21. _:b21 time:before _:bl2. _:bl2 time:before _:b22.
_:b22 time:equals _:b32. _:b31 time:before _:b21
_:b42 time:equals _:b31.
_ b4l time:before _:bll. _:bl2 time:before _:b42.

The triples in (27) form a cycle, which can be described as follows (the mathematical symbols “="" and “<” are used

here in place of equals and before):
(28) _:bl2 < _:b42 = _:b31 < _:b21 < _:bl2

Then, the SHACL-SPARQL rules enforcing anti-reflexivity, transitivity, and the preservation of before under
substitution of equals in either argument are once again able to infer that the knowledge graph is invalid.
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7. Extending the proposed SHACL axiomatization for the Time Ontology

The previous sections presented a SHACL axiomatization for validating the RDF resources shown in Figure 1,
adapted from the original first-order logic axiomatization in [32].

The rationale for this validation is straightforward: as outlined at the beginning of Section 6, the properties
equals, before, and after define a basic temporal algebra over the class Instant, which resemble closely
the semantics of the mathematical operators “=", “<”, and “>" (with “>” being redundant, as it can be expressed as
the inverse of “<”). The RDF triples involving the resources in Figure 1 are thus translated into constraints within
this basic temporal algebra through SHACL-SPARQL rules.

Once all before (<) and equals (=) relations have been identified, the basic temporal algebra must satisfy
the following requirements:

— When two instants are connected by before or equals and are associated with xsd:dateTime values,
the ordering of these values must be consistent with the temporal ordering denoted by the property. This is
enforced via the SHACL shapes in (11).

— The property be fore is anti-reflexive. This is enforced by the SHACL shape in (15).

As explained above, the remaining RDF resources in Figure 1 impose only constraints within this basic temporal
algebra. For instances, for the classes Instant and ProperInterval, the following holds:

— Instant: the beginning of the instance must be equal (=) to its end.
— ProperInterval: the beginning of the instance must precede (<) its end.

LR}

Concerning the thirteen properties representing Allen’s temporal relations, they impose additional “<” and “=
constraints on the endpoints of the two proper intervals they relate, as specified in Table 4. The same holds for the
property inside, which imposes additional “<” constraints between its object instant and the beginning and end
of the temporal entity serving as its subject.

The class TemporalEntity, on the other hand, poses some challenges, as it subsumes both Instant and
ProperInterval. Consequently, if an RDF resource is known only to belong to TemporalEntity, itis not
possible to infer constraints between its beginning and end using before (<) or equals (=). Introducing a new
property, such as beforeORequals, corresponding to “<”, would address this issue; it could be axiomatized via
SHACL-SPARQL rules as transitive and, when both arguments are equal, also reflexive and symmetric.

However, we chose not to extend the Time Ontology vocabulary with such a property. Instead, we added axioms
“8.” and “9.” in Table 3 to propagate be fore assertions across endpoints. In terms of “<”, these axioms capture the
implications ( (t1<t2) A(t2<t3))—(tl<t3) and ((tl<t2)A(t2<t3))— (t1l<t3). As a result, they
enable the detection of invalid knowledge graphs, such as the one in Figure 5 above. It is worth noting that these
graphs are not flagged as inconsistent by [32], since that axiomatization includes only axiom “7.” in Table 3 but
lacks mechanisms for propagating temporal constraints between endpoints, analogous to axioms “8.” and “9.”.

Therefore, compared to [32], our SHACL formalization indeed provides a more comprehensive and effective
validation of the before, equals, and inside properties, the classes TemporalEntity, Instant, and
ProperInterval, and the thirteen properties representing Allen’s temporal relations.

Building on this foundation, although our focus in this paper has been limited to validating the RDF resources
in Figure 1, additional rules could be introduced to enable further inferences. For example, two SHACL-SPARQL
rules could be added to implement the following first-order logic axioms:

(29) Vri1r2[(equals (th, te)AhasBeginning (T, tb) A hasEnd (T, te))— Instant(T)]
VT,tl,tz [(before (tb,te)AhasBeginning (T, tb)A hasEnd (T, te))— ProperInterval(T)]

These two axioms were not included in the axiomatization presented in the previous sections because they are not
relevant to the validation task. As explained above, to validate the RDF resources in Figure 1, only the constraints
on the basic temporal algebra for equals (=) and before (<) are needed. The two axioms in (29) do not extract
any such constraints; rather, they implement complementary inferences: if the knowledge graph specifies that the
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beginning and end of a temporal entity are connected by equals rather than before, these axioms infer the
category of the temporal entity, i.e., Instant rather than ProperInterval.

These two rules may therefore be useful in applications that require categorizing temporal entities; otherwise,
their inclusion merely enriches the knowledge graph for the sake of completeness, without providing any practical
benefit in the present context. For this reason, they were not included in the previous sections, where the primary
focus was on validating the knowledge graphs constructed from the resources shown in Figure 1.

A more concrete example comes from the RDF-based framework recently proposed in [58] for reasoning about
obligations, permissions, and other deontic statements. Incorporating the Time Ontology into the framework de-
scribed in [58] is left for future work, with the aim of enabling inferences such as determining that, in (30.a-b), John
violated the prohibition on entering the park, but only from 4pm to Spm.

(30)  a. Itis prohibited to enter the park from 3pm until Spm.
b. John was in the park from 4pm until 6pm.

To draw this inference, we need to introduce an additional SHACL-SPARQL rule that, given two proper intervals
that overlap, creates a new instance of ProperInterval representing the interval shared by the two overlapping
intervals (unless this proper interval already exists). This rule could be:

(31) sh:targetSubjectsOf time:intervalOverlaps;
CONSTRUCT{?pi3 a time:ProperInterval.
?pi3 time:hasBeginning ?b. ?pi3 time:hasEnd Ze.
?pi3 time:intervalFinishes $this. ?pi3 time:intervalStarts ?pi2}
WHERE{$this time:intervalOverlaps ?piZ2.
?pi2 time:hasBeginning ?b. $this time:hasEnd Ze.
OPTIONAL{?p time:hasBeginning ?b. ?p time:hasEnd ?e}
BIND (IF (BOUND (?p), ?p, BNODE()) AS ?pi3)}

Given the two proper intervals [3pm, S5pm] and [4pm, 6pm], the rule in (31) infers and generates the new proper
interval [4pm, 5pm], which is the interval to be associated with the violation. Naturally, adding the rule in (31)
to the axiomatization from the previous section would also be irrelevant for the purpose of validating the RDF
resources in Figure 1; this rule is required only in the proposed extension of the framework in [58].

The discussions made so far in this section suggest that SHACL-SPARQL rules should be task-oriented. In
other words, we should not attempt to include every possible rule to derive all conceivable knowledge. Striving for
exhaustiveness would only increase computational costs and make updates and debugging more difficult, since a
larger number of rules would need to be maintained and monitored. Instead, we should focus on the specific task
at hand, such as validating the semantics ascribed to a given set of RDF resources, as done in this paper, rather
than inferring additional intervals as in the example in (30); we should define only the minimal number of SHACL-
SPARQL rules necessary for that task.

Adding further rules is not the only possible way to broaden the scope of the axiomatization presented above.
Another possible direction is to extend the vocabulary of the Time Ontology with new RDF resources.

For example, one could introduce RDF resources capable of representing vectors of Allen’s temporal relations
and complement them with inference rules that implement Allen’s propagation algorithm. However, as noted in
Section 3, this may not always be advisable, since Allen’s propagation algorithm for the full temporal algebra has
exponential complexity. A more pragmatic approach would therefore be to restrict the extension to a tractable sub-
algebra, such as the one proposed in [56], where reasoning can be performed in polynomial time. However, this
direction requires substantial further research, which we may address in future work.

Another possible extension of the Time Ontology’s vocabulary, which we have actually advocated above, con-
cerns the representation of infinite intervals. As previously discussed, [32] model infinite intervals as those in which
one or both endpoints are explicitly omitted. In that approach, if the beginning of an interval is missing, it is assumed
to be —oo; if the end is missing, it is assumed to be +o0o. We chose not to adopt this approach because, as explained
above, we consider it difficult to reconcile with the Open World Assumption, which is central to RDF semantics.
In our axiomatization, every temporal entity is instead required to have both endpoints, which may take the values
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—00, 400, or a specific xsd:dateTime value via the property inXSDDateTime. An endpoint may also lack a
value, in which case this value is interpreted as “unknown”, in accordance with the Open World Assumption.

Since —oo and +-oco cannot be represented using the xsd:dateTime datatype, we introduce two new classes,
minusInfinite and plusInfinite, to represent instants with these values. In other words, instants that are
instances of these classes are intended to denote instants whose values are —oo and +oo, respectively.

Additionally, SHACL shapes are introduced to invalidate knowledge graphs that contain instants with values —oo
or +o00. In particular, a knowledge graph is considered invalid if:

(32)

a. An instant belongs to both classes minusInfinite and plusInfinite, or to only one of them
while also being associated with an xsd: dateTime value. This enforces that an instant cannot simul-
taneously have the values —oo and 400, nor can it have either of these while also being associated with
a finite xsd: dateTime value.

b. An instant belongs to the class minusInfinite and also occurs as the object of hasEnd, or it
belongs to the class plusInfinite and also occurs as the object of hasBeginning. This enforces
that temporal entities cannot begin at oo or end at —oo.

c. An instant belongs to either the class minusInfinite or plusInfinite and is connected via the
property equals to another instant that either belongs to the opposite class or is associated with an
xsd:dateTime value. This enforces that an instant cannot be —oo or +oo and, at the same time,
be equal to another instant associated with the infinite value of the opposite sign or with a finite
xsd:dateTime value. A similar constraint applies to the property before: no instant may occur
before —oo or after 400, including other instants that are themselves associated with these values.

The shapes implementing (32.a) are shown in (33); the UNION clause captures both options described in (32.a).

(33)

sh:targetClass time:minusInfinite;

SELECT $this

WHERE{ {$this a time:plusInfinite}UNION{S$this time:inXSDDateTime ?dt}}

sh:message "Invalid Instant {S$this}: this instant’s value is both -infinite
and either +infinite or a finite xsd:dateTime value."

sh:targetClass time:plusInfinite;

SELECT $this

WHERE{ {$Sthis a time:minusInfinite}UNION{Sthis time:inXSDDateTime ?2dt}}

sh:message "Invalid Instant {S$this}: this instant’s value is both +infinite
and either —-infinite or a finite xsd:dateTime value."

(32.b) is implemented by the following two SHACL shapes; the FILTER clause ensures that the case where an
infinite instant both begins and ends at itself, as enforced by axioms “2.” and “3.” in Table 3, is not reported as
invalid by the shapes, since these triples are considered acceptable.

(34)

sh:targetClass time:minusInfinite;

SELECT $this 2T

WHERE{?T time:hasEnd $this. FILTER((?T!=$this)&&!EXISTS{?T time:equals $this})}
sh:message "Invalid TemporalEntity {?T}: it ends at —-infinite."

sh:targetClass time:plusInfinite;
SELECT $this ?T
WHERE{?T time:hasBeginning $this.
FILTER((?T!=$this)&&!EXISTS{?T time:equals S$this})}
sh:message "Invalid TemporalEntity {?T}: it begins at +infinite."

Finally, (32.c) is implemented by the following two SHACL shapes; as in the SHACL shape in (33), the UNION
clauses allow to account for all possible cases.
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(35) sh:targetSubjectsOf time:equals;
SELECT $this ?t
WHERE{$this time:equals ?t.
{Sthis a time:minusInfinite
{?t a time:plusInfinite}UNION{?t time:inXSDDateTime ?dt}}UNION
{$this a time:plusInfinite
{?t a time:minusInfinite}UNION{?t time:inXSDDateTime ?2dt}}}
sh:message "Invalid Instant {S$this}: it is associated with an infinite
value but is also equal to another instant with a value
incompatible with this infinite wvalue."

sh:targetSubjectsOf time:before;
SELECT $this
WHERE{ {$this a time:plusInfinite}UNION
{Sthis time:before ?t. ?t a time:minusInfinite}}
sh:message "Invalid Instant $this: it either is +infinite and another
instant occurs after it, or it occurs before another instant
associated with —-infinite."

The classes minusInfinite and plusInfinite, together with the shapes in (33), (34), and (35), extend the
basic temporal algebra defined in the previous sections for the properties equals (=) and before (<). While
the algebra in the previous sections encompassed only finite xsd:dateTime values, these two new classes also
allow it to include the values —oo and +o0o. The new shapes then check for and invalidate the following patterns

involving instants at —oo and 400 (assuming “dt” is some specific xsd: dateTime value, while “»” represents
“any value”, i.e., either —oo, 400, or dt):

* —00 =400
e —oo=dt
* t+oo=dt
® [*I_OO]
e [+o00, %]

* 400 <%
¢ x < —00

An example of invalid knowledge graph is the following:
(36) :T time:hasBeginning :tb. :tb a time:plusInfinite. :tb time:before :t.

These triples are invalid for two reasons. First, the instant tb, whose value is 400, is specified as the beginning of
the temporal entity T. As correctly detected by the second SHACL shape in (34), this is not allowed: a temporal
entity cannot begin at +oo (in symbols: “[+o0, *]” is not allowed). Second, the triples in (36) indicate that tb
occurs before the temporal entity t. As correctly detected by the second SHACL shape in (35), this is also invalid,
because +o0o cannot occur before any other instant (in symbols: “+o00 < * is not allowed).

8. Beyond the Time Ontology: challenges and risks of using SHACL-SPARQL rules

This paper has demonstrated the high expressivity of SHACL, and in particular of SPARQL, which is embedded
within SHACL. This expressivity enables the implementation, within the Time Ontology, of inferences that are
significantly more advanced than those currently supported in the ontology’s official OWL-encoded version.

However, the expressive power of SPARQL also introduces potential challenges and risks. Although the SHACL-
SPARQL rules proposed above for the Time Ontology are not affected by these issues, as will be explained below,
this final section discusses them more generally to caution readers about the potential pitfalls of using SHACL-
SPARQL rules on RDF ontologies.

Specifically, the use of SHACL-SPARQL rules involves two main risks: (1) the potential for infinite loops, and (2)
the possibility of non-deterministic outcomes. The following subsections examine these issues in detail and explain
why, in the set of SHACL-SPARQL rules presented above, they either do not occur or have no practical effect.
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8.1. SHACL-SPARQL rules may generate infinite loops

As explained at the end of the Introduction, in this paper inference is performed in the same way as standard OWL
reasoners, such as HermiT, where OWL axioms are repeatedly applied until no further triples can be inferred.

On a fixed set R of RDF resources, of which PCR are properties, the maximum (finite) number of possible triples
that can be created is RxP XR. Once all such triples among the R resources have been generated, no further triples
can be added, ensuring that the process terminates.

However, SHACL-SPARQL rules can also create new individuals in the CONSTRUCT clause, thereby expanding
the set of resources R. As a result, re-executing these rules may indeed lead to an infinite loop.

A simple illustrative example of a SPARQL rule in CONSTRUCT-WHERE form that triggers an infinite loop via
repeated execution is the following:

(37) CONSTRUCT{?f a :Man. ?m :friend-of ?f}
WHERE{?m a :Man. BIND (BNode () AS ?f)}

Consider an initial knowledge graph containing a single man. The WHERE clause in (37) creates a new anonymous
individual, binds it to the variable ? £, and asserts that it is both a man and a friend of the first man. Therefore, after
the first execution of the rule, the knowledge graph contains two men. Re-executing the rule adds two more men
as friends of the two existing ones, then four, then eight, and so on, resulting in exponential growth that ultimately
generates an infinite number of men.

Of course, more complex patterns of SHACL-SPARQL rules that generate infinite loops are possible. For in-
stance, we could have a set of n rules, where the first rule produces a new individual that matches the WHERE clause
of the second rule, the second rule produces a new individual matching the WHERE clause of the third rule, and so
on, until the last rule, which then produces a new individual matching the WHERE clause of the first rule.

It is therefore evident that rules creating new anonymous individuals must be carefully checked. It is the respon-
sibility of the knowledge engineer to determine, when such rules are included in the axiomatization, whether they
might generate infinite loops and, if so, to include conditions in their WHERE clauses to “break” the loop.

In the SHACL axiomatization of the Time Ontology described above, only a single SHACL-SPARQL rule gen-
erates new anonymous individuals. This is the rule in (19) above, which is associated with the first-order logic
axiom “1.” in Table 3. For the reader’s convenience, both the rule and the first-order logic axiom are repeated here:

(38) Vr[TemporalEntity (T)— Jipte [hasBeginning (T, tb) AhasEnd(T, te)]

sh:targetClass time:TemporalEntity;
CONSTRUCT{$this time:hasBeginning ?tb. $this time:hasEnd ?te.
?tb a time:Instant. ?te a time:Instant}
WHERE{OPTIONAL{S$this time:hasBeginning ?tbopt}
BIND (IF (EXISTS{Sthis a time:Instant}, $this,
IF (BOUND (?tbopt), ?tbopt,BNode () )) AS ?tb)
OPTIONAL{S$this time:hasEnd ?teopt}
BIND (IF (EXISTS{S$this a time:Instant}, Sthis,
IF (BOUND (?teopt), ?teopt,BNode () )) AS ?te)}

If the first-order logic axiom in (38) were implemented in SHACL-SPARQL exactly as written, the rule would result
in an infinite loop: for each temporal entity T, two new temporal entities, tb and te, would be generated. These
new entities would re-enter the rule, producing two additional temporal entities, then four, then eight, and so on, as
in the previous example in (37).

To avoid this infinite loop, we observed that: (1) the two new individuals tb and te must be instances of
Instant, since they are asserted in the CONSTRUCT clause as objects of hasBeginning and hasEnd; and
(2) the beginning and the end of an instant are the instant itself, as stipulated by axioms “2.” and “3.” in Table 3.
Based on these observations, we were able to expand the rule as shown in (38) without altering the intended se-
mantics. The version in (38) does not generate infinite loops, because all newly created anonymous individuals are
asserted as instances of Instant; therefore, when they re-enter the same rule, they satisfy the first branch of the
IF condition, and thus no additional individuals are generated.
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Nevertheless, the mechanism used in (38) to prevent infinite loops is, of course, an ad-hoc and non-generalizable
solution. It was easy to implement due to the specific semantics we wish to ascribe to the Time Ontology, and the
fact that (38) is the only rule in the axiomatization that creates anonymous individuals.

For other RDF ontologies or alternative semantics, the SHACL axiomatization may involve a larger number of
SHACL-SPARQL rules that create anonymous individuals. In such cases, the knowledge engineer must demonstrate
that these rules, when executed together, never result in infinite loops. When the interaction patterns become more
complex, this may require supplementing the axiomatization with formal proofs to guarantee termination.

8.2. SHACL-SPARQL rules may lead to non-deterministic outcomes

SHACL-SPARQL rules behave like a standard rule-production system. However, not all sets of SHACL-SPARQL
rules behave as a monotonic rule-production system, in which adding new information does not invalidate previous
conclusions and, consequently, the set of inferred triples does not depend on the execution order of the rules.

In fact, the SPARQL vocabulary contains non-deterministic operators that vary their outcome based on the pres-
ence of certain triples in the knowledge graph, which may be produced by other rules. Examples of such oper-
ators include EXISTS, IF, and OPTIONAL. These operators can lead to non-deterministic behavior, depending
on whether the rules that generate the triples they test are executed before or after them. A simple example is the
following pair of SHACL-SPARQL rules:

(39) CONSTRUCT{?m a :Lonely}
WHERE {NOT EXTSTS{?m :friend-of 2f}}

CONSTRUCT{?ml :friend-of ?m2}
WHERE{?ml a :Man. ?m2 a :Man. FILTER(?ml!=?m2)}

The WHERE clause of the first rule in (39) is satisfied by every individual who has no friends; the rule infers that
each such individual is an instance of the class Lonely. The second rule in (39), on the other hand, searches the
knowledge graph for pairs of men and, for each pair, asserts that the two men are friends.

It is easy to see that the two rules in (39) may produce different outcomes depending on the order in which they
are executed. Consider, for example, a knowledge graph containing two men: John and Jack. If the first rule in
(39) is executed first, both John and Jack are inferred to be lonely men. If the second rule is executed first, John
and Jack are inferred to be friends, which prevents the first rule from applying; in other words, if the second rule
is executed first, John and Jack are not inferred to be lonely men.

The non-deterministic behavior of the two rules in (39) is due to the NOT EXISTS clause, which is the SPARQL
operator used to implement negation-as-failure. As is well known, negation-as-failure is a non-monotonic operator;
therefore, if the triples specified within the NOT EXISTS clause do not exist in the knowledge graph, i.e., if they
are unknown, the clause evaluates to true.

Other SPARQL operators can produce similar effects, thereby emulating negation-as-failure. For instance, the IF
operator, used to create if-else conditions in the WHERE clause, yields one outcome if certain conditions are met
and another outcome otherwise. However, these conditions might be entailed by other rules, which may be executed
before or after the rule containing the IF clause. The same considerations apply to the OPTIONAL operator, which
binds variables to certain RDF resources when the corresponding triples exist; again, these triples may be entailed
by other rules, which may be executed before or after the rule containing the OPTIONAL clause.

As with the problem of infinite loops, it is again the responsibility of the knowledge engineer to verify either
that the set of SHACL-SPARQL rules is monotonic or that, in cases where multiple outcomes are produced, the
intended semantics is preserved in all of them. Such verification again requires an ad-hoc formal analysis of the
specific axiomatization, the results of which are not always generalizable.

To address non-determinism, the SHACL-SPARQL vocabulary provides the property sh:order, which en-
ables prioritization of rules. By defining a specific execution order, non-deterministic behavior can be avoided. This
strategy has been applied, for example, in [59].

In the axiomatization proposed above for the Time Ontology, it was not necessary to prioritize the rules using
sh:order, because only a single SHACL-SPARQL rule includes non-deterministic operators. Although this rule
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may indeed produce different outcomes in a few cases, none of these outcomes affects the intended semantics or,
more generally, the task of validating the Time Ontology resources shown in Figure 1.

This rule, again, is the one in (38). As explained in the previous subsection, it may or may not create new instants
and assign them as the beginning and end of a temporal entity, depending on whether the temporal entity is itself
an instant or already specifies its beginning or end. However, the classification of a temporal entity as an instant, or
the specification of its beginning or end, may be entailed by other rules; consequently, depending on whether these
rules are executed before or after (38), the latter may or may not create new anonymous individuals.

In particular, the proposed axiomatization includes three rules that may interfere with (38) in this way. These are
the rules corresponding to axioms “4.”, ““5.”, and “6.” in Table 1, which infer a temporal entity to be an instance of
Instant if the entity occurs as the object of the properties hasBeginning, hasEnd, or inside.

An example of a knowledge graph that may yield two different inferred graphs, depending on the execution order
of the aforementioned rules, is the following:

(40) :T time:hasBeginning :tb. :tb a time:TemporalEntity.

Since tb occurs as the object of hasBeginning, and the range of hasBeginning is the class Instant, if
the second rule in (14) above, defined on rdfs: range, executes first, tb is inferred as an instance of the class
Instant. Therefore, when (38) executes on tb, it is set as both the beginning and the end of itself. With this rule
execution order, the inferred knowledge graph is then the following:

(41) :T time:hasBeginning :tb. :tb a time:TemporalEntity.
:tbh a time:Instant. :tb time:hasBeginning :tb. :tb time:hasEnd :tb.

By contrast, if (38) executes on tb before (14), two new anonymous individuals are created and then inferred
as instances of Instant, as well as as the beginning and end of tb. Then, tb is also inferred as instance of
Instant by the second rule in (14) and its beginning and end sets to tb itself. Finally, the SHACL-SPARQL rules
corresponding to axioms “4.” and “5.” in Table 3 set tb equal to the two anonymous individuals, which are then
inferred to be equal to each other. The inferred knowledge graph is then the following:

(42) :T time:hasBeginning :tb. :tb a time:TemporalEntity.
:tb time:hasBeginning :_b0. :tb time:haskEnd :_bl.

b0 a time:Instant. :_bl a time:Instant. :tb a time:Instant.
:tb time:hasBeginning :tb. :tb time:hasEnd :tb.
:tb time:equals :_b0. :tb time:equals :_bl. :_b0 time:equals :_Dbl.

Since all instants are inferred to be equal, it is easy to see that the SHACL shapes presented in the previous sections
yield the same results on both (41) and (42). According to the basic temporal algebra implemented by these shapes
on the properties equals (=) and before (<), a knowledge graph is invalidated if and only if tb, and any other
instant equal to it, are assigned different xsd: dateTime values.

Again, it was relatively straightforward to explain that the potential non-deterministic behavior of the proposed
axiomatization does not affect the validation of the Time Ontology resources shown in Figure 1: only a single, and
rather simple, rule had to be examined, the same that could potentially engender infinite loops. This rule is the only
one that both creates new anonymous individuals and utilizes non-deterministic SPARQL operators.

Nevertheless, it is clear that investigating more complex axiomatizations, which include multiple rules that create
anonymous individuals and/or employ non-deterministic SPARQL operators such as EXISTS, IF, or OPTIONAL,
requires considerably more care and should ideally be accompanied by detailed formal proofs.

9. Conclusions and future works

This paper introduced a novel SHACL axiomatization for the Time Ontology. Effective time management is crucial
in both academia and industry, as it underpins a wide range of real-world applications. The Time Ontology is
widely recognized as the “de facto” standard for representing temporal data in the Semantic Web. However, its
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current OWL-based version primarily serves as a terminological vocabulary, providing standardized symbols to label
instants, intervals, and other temporal concepts. While harmonizing and standardizing these symbols is essential for
interoperability and data sharing, the ontology itself offers only limited inferencing capabilities, which can lead to
inconsistencies such as intervals that end before they start.

The SHACL axiomatization we proposed is inspired by and built upon the first-order logic axiomatization defined
by Jerry R. Hobbs and Feng Pan, the original proponents of the Time Ontology, in [32]. Although their axiomati-
zation was introduced about twenty years ago, it has never been fully implemented in OWL or other Semantic Web
formalisms such as SWRL, perhaps due to the limited expressivity of these formalisms to capture its complexity.
By contrast, using SHACL, the implementation of these axioms becomes relatively straightforward.

However, rather than adopting Hobbs and Pan’s axiomatization verbatim, we defined a variant that retains most
of the original axioms while introducing several key extensions. Three main reasons underpin this choice:

(43) a. Hobbs and Pan represent infinite intervals as intervals that explicitly lack one or both endpoints. As
discussed in Section 7 and earlier, we consider this approach highly incompatible with the Open World
Assumption, a fundamental principle of RDF semantics. As an alternative, we propose extending the
Time Ontology’s vocabulary by introducing two additional classes to represent the values —oo and
400, along with SHACL shapes to validate knowledge graphs containing these values.

b. Hobbs and Pan’s axiomatization does not employ the equals property, which is part of the Time
Ontology vocabulary, nor does it allow associating instants with explicit finite xsd : dateTime values.
We introduce SHACL shapes and SHACL-SPARQL rules to address these gaps.

c. We identified a few patterns of invalid knowledge graphs that Hobbs and Pan’s axiomatization does not
flag as inconsistent (e.g., Figure 5). Our axiomatization introduces two additional axioms to detect and
mark these patterns as invalid.

The extended first-order logic axiomatization incorporating (43.a—c) constitutes a further contribution of this paper.
Overall, we believe our work opens new opportunities for temporal data validation and Al-driven reasoning over
temporal knowledge in the Semantic Web.

In addition, our research journey on defining the SHACL axiomatization of the Time Ontology helped us identify
broader insights into SHACL itself, particularly regarding the interplay between validation and inference. In other
words, the SHACL axiomatization of the Time Ontology that we developed has actually served as a case study for
SHACL, illustrating how the W3C standard can be applied effectively.

First, we demonstrated that SHACL shapes alone are insufficient to detect certain invalid knowledge graphs
that can be constructed using the Time Ontology vocabulary. A notable example is the “zig-zag” pattern shown in
Figure 3, which is particularly illustrative, as it can arise using only the RDF class Instant and the properties
inXSDDateTime and hasEnd. Therefore, simply put, SHACL shapes cannot fully validate knowledge graphs
built from even a single class and two properties of the Time Ontology vocabulary. This limitation stems from
the fact that SPARQL 1.1 Property Paths, the only SHACL construct for examining subgraphs of arbitrary length,
can define regular expressions over properties but cannot simultaneously impose constraints on the RDF nodes
connected by these properties. Although this empirical finding pertains specifically to the Time Ontology, its impli-
cations appear broader: if SHACL shapes cannot adequately validate relatively simple knowledge graphs built with
this vocabulary, similar limitations can reasonably be expected in more complex scenarios.

To overcome this limitation, we argue that validation should be performed on the fully inferred knowledge graph,
i.e., the graph obtained by iteratively applying inference rules until no new triples are derived. This two-step proce-
dure is not prescribed by the W3C Working Group Note (08 June 2017)%2, which, in fact, even appears to suggest
the reverse sequence: first validate the graph, then apply the rules?*.

More broadly, our work highlights the general need to balance inference and constraint validation in SHACL.
One possible solution is the definition of SHACL dialects or profiles, similar to the profiles defined for OWL (OWL

2https://www.w3.org/TR/shacl-af
2See https://www.w3.org/TR/shacl-af/#rules-examples; note, however, that this section is non-normative (personal communication with Hol-
ger Knublauch).
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Lite, OWL DL, OWL2 EL, etc.)**. Defining different profiles would allow practitioners to select an appropriate
level of expressivity while managing computational complexity. The current W3C SHACL recommendation already
mentions support for different entailment regimes®, but only the SPARQL 1.1 entailment regimes?® are listed, and
their support is even indicated as optional.

Defining additional profiles or entailment regimes that accept only specific patterns of SHACL-SPARQL rules
poses a significant research challenge and demands substantial effort from the Semantic Web research community.

As discussed in the previous section, two main risks must be considered when iterating SHACL-SPARQL
rules until no further triples are inferred: SHACL-SPARQL rules can produce infinite loops when creating new
anonymous individuals or non-deterministic outcomes when using SPARQL operators such as EXISTS, IF, and
OPTIONAL. To ensure termination and either deterministic or harmless non-deterministic outcomes, different pro-
files or entailment regimes could restrict the creation of new individuals and the use of these non-deterministic
operators, allowing them only in patterns that avoid infinite loops and harmful non-determinism.

However, it should be noted that this paper does not claim that SHACL-SPARQL rules must always be used
for reasoning over knowledge graphs. In some cases, OWL or other reasoning languages provide simpler or more
cost-effective solutions, while in others, even SHACL-SPARQL may lack sufficient expressivity. For example, im-
plementing Allen’s propagation algorithm to realize the full version of Allen’s temporal algebra requires cycles over
intervals [28], which SHACL-SPARQL cannot handle. In such cases, SHACL-X?’, which integrates SHACL with
JavaScript, appears to provide the necessary expressive power.

More generally, the choice of the inference language, whether OWL, SHACL-SPARQL, SHACL-X, or a dialect
of these, should be guided by the expressivity required for a given use case, while avoiding unnecessary complexity.
Defining dialects and entailment regimes for SHACL, similar to what has been done with OWL profiles over the
past decades, could enable targeted implementations and specialized reasoners optimized for each regime.

In sum, this paper not only proposes a SHACL axiomatization for the Time Ontology but also contributes to a
broader understanding of the interplay between inference and validation in the Semantic Web, paving the way for
more systematic exploration and practical tooling in this area.
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